Двигатель с изменяемой степенью сжатия. Двигатель с переменной степенью сжатия: особенности конструкции

Подписаться
Вступай в сообщество «auto-piter.ru»!
ВКонтакте:

Важным техническим показателем современного ДВС является степень сжатия, которая представляет собой отношение объема рабочего цилиндра, когда поршень находится в, так называемой, нижней мертвой точке (НМТ) к объему камеры сгорания.

Рост степени сжатия позволяет создавать наиболее подходящие условия для воспламенения ТВС (топливо-воздушной смеси) в камере сгорания, и как результат - более рационального использования выделяемой при этом энергии.

Особенности системы изменения сжатия

Степень сжатия изменяется в зависимости от типа используемого топлива и рабочих режимов двигателя. Подобные изменения учитываются и применяются системой изменения степени сжатия.

В бензиновых ДВС данный показатель ограничивается исключительно той областью, в которой происходит детонация ТВС . При малых нагрузках увеличение сжатия не приводит к процессу детонации, а вот при усиленных нагрузках детонация может достигнуть критической точки.

Двигатель с системой сжатия МСЕ-5

ДВС, оснащенный подобной системой, имеет достаточно сложную конструкцию, которая предполагает изменение характеристики рабочего хода поршней в цилиндрах.

Секатор зубчатый вступает во взаимодействие с рабочим поршнем и поршнем управления. Коромысло соединяется через рычаг с коленвалом.

Секатор движется под воздействием поршня управления. Камера над поршнем начинает заполняться маслом, объем которого строго контролируется специальным клапаном.

При перемещении секатора происходит изменение положении ВМТ поршня, и как следствие - изменение рабочего объема камеры сгорания при значительном интервале сжатия.

В настоящее время двигатель МСЕ-5 еще не пущен в серийное производство, но имеет неплохие перспективы развития в будущем.

Новую концепцию ДВС, оснащенного современной системой сжатия представила компания Lotus Cars. Это уникальный двухтактный двигатель, получивший название Omnivore, который позволяет использовать различные виды топлива - бензин, дизель, спирт, этанол и др.

Верхняя часть камеры оснащена шайбой, перемещение которой приводит к изменению объема камеры. Это позволяет обеспечить наивысшую степень сжатия - 40 к 1.

Несмотря на свою эффективность, подобная система сжатия в настоящее время не позволяет добиться хороших показателей относительно экономичного расхода топлива и экологичности двухтактного двигателя.

Дорогие друзья! До чего только не додумаются люди ради того, чтобы быть свободными в своем выборе. Даже додумались и воплотили в жизнь двигатель с переменной степенью сжатия

Да, именно то, что казалось невозможно изменить после того как прикрутили головку блока. Но нет, оказывается можно, и даже несколькими способами.

В бензиновых двигателях значения степени сжатия в прямую связано с условиями детонации. Оно как правило возникает при нагрузках и зависит от качества бензина.

Двигатели с высоким КПД имеют высокие показатели степени сжатия, как следствие используют топливо с высокооктановым числом, менее подверженное к детонации при максимальных нагрузках.

Для поддержания мощностных характеристик двигателя в бездетонационном режиме логично снижать степень сжатия. Например, при резком разгоне или при движении на подъем, когда цилиндры максимально наполняются топливной смесью, выжимая из него все что он имеет.

Тут бы и немного снизить степень сжатия, чтобы избежать детонацию, не снижая его мощности, которая сильно повышает износ поршневой группы двигателя.

При средних нагрузках, высокий уровень степени сжатия не провоцирует детонацию, степень сжатия высокая, КПД тоже, его мощность остается максимальной, за счет этого естественно повышается его экономичность.

Казалось бы, эту задачу можно решить просто, вдувать топливную смесь под разным давлением в камеру сгорания, по мере надобности.

Но вот незадача, при повышении таким способом степени сжатия, увеличиваются нагрузки на детали двигателя. Решать такие проблемы надо будет увеличением соответствующих деталей, что соответственно скажется на общей массе двигателя. При этом снижается надежность двигателя и соответственно его ресурс.

При переходе на изменяющуюся степень сжатия, процесс наддува можно так организовать, что при снижении степени сжатия, он будет обеспечивать максимально-эффективное давление при любом режиме работы.

При этом нагрузки на детали поршневого отдела двигателя будут не значительно увеличены, что позволит безболезненно форсировать двигатель без значительного увеличения его веса.

Понимая это, изобретатели и призадумались. И выдали. На чертеже ниже представлена самый распространенный вариант изменения степени сжатия.

На средних нагрузках, по средством эксцентрика 3, доп.шатун 4 принимает крайнее правое положение и поднимает диапазон хода поршня 2 в самое верхнее положение. СЖ в таком положении максимальная.

На высоких нагрузках, эксцентрик 3 смещает доп.шатун 4 влево, что смещает шатун 1 с поршнем 2 вниз. При этом зазор над поршнем 2 увеличивается, уменьшая степень сжатия.

Система от SAAB

Первыми воплотили мечту в жизнь инженеры фирмы SAAB и в 2000 году на выставке в Женеве выставили на всеобщее обозрение экспериментальный двигатель с системой Variable Compression.

Этот уникальный двигатель имел мощность в 225 л.с., при объеме 1,6 л., а расход топлива был в вдвое меньшим аналогичного объема. Но самое фантастичное, он мог работать и на бензине, и на спирте, и даже на дизельном топливе.

Изменение рабочего объема двигателя осуществлялось бесшагово. Степень сжатия изменялась при наклоне моноблока (совмещенная головка блока с блоком цилиндров) относительно блока-картера. Отклонение моноблока вверх приводило к уменьшению степени сжатия, отклонение вниз — к увеличению.

Смещение по вертикальной оси на 4 градуса, что позволило иметь сжатия от 8:1 до 14:1. Управление изменением степени сжатия, в зависимости от нагрузки, осуществлялось специальной электронной системой управления по средством гидропривода. При максимальной нагрузке СЖ 8:1, при минимальной 14:1.

Так же в нем применялся механический наддув воздуха, он подключался только при наименьших значениях степени сжатия.

Но не смотря на такие удивительные результаты, двигатель не пошел в серию, и работы по доводке на сегодняшний день свернуты по неизвестной нам причине.

VCR (Variable Compression Ratio)

Французы фирмы MCE-5 Development, для автоконцерна Пежо разработали принципиально новый двигатель VCR, с совершенно оригинальной кинематической схемой кривошипно-шатунного механизма.

МСЕ-5 Development, сделала для концерна «Пежо», тоже двигатель с переменной степенью сжатия VCR. Но в этом решении они применили оригинальную кинематику .

В нем передача движения от шатуна на поршень идет через зуб.сектор 5. Справа опорная зуб.рейка 7, на неё опирается сектор 5, так происходит возвратно-поступательное движение поршня, он соединен с рейкой 4. Рейка 7 соеденина с поршнем 6.

Сигнал поступает с блока управления, и в зависимости от режима работы двигателя, изменяется положение поршня 6, связанного с рейкой 7. Смещается рейка управления 7 вверх или вниз. Она изменяет положение НМТ и ВМТ поршня двигателя, и соответственно СЖ от 7:1 до 20:1. Если нужно, можно изменять положение каждого цилиндра отдельно.

Зубчатая рейка жестко скреплена с управляющим поршнем. В пространство над поршнем подается масло. Давлением масла и регулируется степень сжатия в основном рабочем цилиндре.

Соединительный рычаг 1, шестерня синхронизации 2, стойка поршня 3, рабочий поршень 4, выпускной клапан 5, головка блока цилиндров 6, впускной клапан 7, поршень управления 8, блок цилиндров 9, стойка поршня управления 10, зубчатый сектор 11.
В данное время двигатель дорабатывается и вполне возможно появится в серии.

Еще есть одна разработка от Lotus Cars, это двухтактный двигатель Omnivore (всеядный). Назвали его так, потому что разработчики заявляют, что он тоже может работать на любом топливе.

Конструктивно он представляется так. Вверху цилиндра расположена шайба, управляемая эксцентриковым механизмом. Чем примечательна эта конструкция, она позволяет достигать СЖ до 40:1. Клапанов в этом двигателе нет, потому как двухтактный.

Минус такого двигателя в том, что он весьма прожорлив и не экологичен. На автомобилях в наше время почти не устанавливаются.

На этом пока тема систем с изменяющейся степенью сжатия закрывается. Ждем новых изобретений.

До скорой встречи на страницах блога. Подписывайтесь!

Недавно на автосалоне в Париже марка Infiniti (читай, альянс Renault-Nissan) представила двигатель с изменяемой степенью сжатия. Фирменная технология Variable Compression-Turbocharged (VC-T) позволяет варьировать эту самую степень, буквально высасывая все соки из двигателя.

В «идеальной вселенной» правило простое - чем выше степень сжатия топливо-воздушной смеси, тем лучше. Смесь максимально расширяется, поршни движутся как заведенные, следовательно, мощность и КПД мотора максимальны. Другими словами, топливо сжигается чрезвычайно эффективно.

Все было бы замечательно, если б не сама природа топлива. В ходе издевательств его терпению когда-то наступает предел: чем ровнее сгорает смесь - тем лучше, но при высоких нагрузках (высокая степень сжатия, большие обороты) смесь начинает взрываться, а не сгорать. Такое явление называется детонацией, и эта штука весьма разрушительна. Стенки камеры сгорания и сам поршень испытывают серьезные ударные нагрузки и постепенно, но довольно быстро разрушаются. Кроме того, падает эффективность мотора - нормальное рабочее давление на поршень падает.

Таким образом, наиболее выгодный вариант - когда двигатель в любом режиме работает на грани детонации, не допуская этого явления. Инженеры Infiniti составили график, на котором обозначили для себя эффективные режимы работы двигателя в зависимости от нагрузки, величины оборотов и степени сжатия топливо-воздушной смеси. (На самом деле эффективность сгорания топлива можно повышать и другими способами, например, увеличением количества клапанов на цилиндр, настройкой графика их работы, даже выбором места над поршнем, куда направляется впрыск порции топлива. Конечно, мы об этом помним.) Первые два параметра, понятно, зависят как от внешних факторов, так и от тщательного подбора трансмиссии. А третий - степень сжатия - также решено было изменять в пределах от 8:1 до 14:1.


Технически это выглядит как введение в конструкцию кривошипно-шатунного механизма дополнительного элемента - коромысла между шатуном и коленвалом. Коромысло управляется электромотором - рычаг можно сдвигать таким образом, что диапазон хода поршня варьируется в пределах 5 мм. Этого достаточно для существенного изменения степени сжатия.

Достоинств без недостатков не бывает. На первый взгляд, они очевидны: увеличение сложности конструкции, некоторая прибавка в весе... Однако насчет этих минусов грех жаловаться - двигатель получился очень сбалансированным, благодаря чему из конструкции были выведены балансировочные валы. Вероятно также, что двигатель особо чувствителен к марке и качеству топлива. Думается, эта проблема - во всяком случае, в значительной степени - решается программными методами.

Поскольку в названии технологии присутствует слово Turbocharged, очевидно, что такие моторы будут турбированными. Первый из них - двухлитровый 270-сильный встанет под капот кроссовера Infiniti QX50. Уверяют, что двигатель с изменяемой степенью сжатия потребляет на целых 27% меньше топлива, чем обычный мотор аналогичного объема. Цифра крайне внушительная. Надо думать, что и экологичность (количество выбросов вредных веществ) у него на высоте.


За более чем столетний жизненный путь двигатель внутреннего сгорания (ДВС) настолько преобразился, что от родоначальника остался только принцип действия. Почти все этапы модернизации были направлены на повышение коэффициента полезного действия (КПД) двигателя. Показатель КПД можно назвать универсальным. В нем скрыты многие характеристики - расход топлива, мощность, крутящий момент, состав выхлопных газов и т.д. Широкое применение новых технических идей - впрыск топлива, электронные системы зажигания и управления двигателем, 4, 5 и даже 6 клапанов на цилиндр - сыграло положительную роль в повышении КПД двигателей.

Тем не менее, как показал Женевский автосалон, до завершения процесса модернизации ДВС еще далеко. На этом популярном международном автошоу компания SAAB представила результат своего 15-летнего труда - опытный образец нового двигателя с изменяемой степенью сжатия - SAAB Variable Compression (SVC), ставший сенсацией в мире моторов.

Технология SVC и ряд других передовых и нетрадиционных с точки зрения существующих понятий о ДВС технических решений позволили снабдить новинку фантастическими характеристиками. Так, пятицилиндровый двигатель объемом всего 1,6 л, созданный для обычных серийных машин, развивает немыслимую мощность 225 л.с. и крутящий момент 305 Нм. Превосходными оказались и другие, особенно важные сегодня, характеристики - расход топлива при средних нагрузках снижен на целых 30%, на столько же уменьшен показатель выбросов СО2. Что касается СО, СН и NОx и т.д., то они, по утверждению создателей, соответствуют всем существующим и планируемым на ближайшее будущее нормам токсичности. В дополнение к этому переменная степень сжатия дает двигателю SVC возможность работать на различных марках бензина - от А-76 до Аи-98 - практически без ухудшения характеристик и исключая появление детонации.

Безусловно, существенная заслуга таких характеристик - в технологии SVC, т.е. в возможности изменять степень сжатия. Но перед тем, как познакомиться с устройством механизма, позволившим изменять эту величину, вспомним некоторые истины из теории конструкции ДВС.

Степень сжатия

Степень сжатия - это отношение суммы объемов цилиндра и камеры сгорания к объему камеры сгорания. С увеличением степени сжатия в камере сгорания повышаются давление и температура, что создает более благоприятные условия для воспламенения и сгорания горючей смеси и повышает эффективность использования энергии топлива, т.е. КПД. Чем степень сжатия выше, тем КПД больше.

Проблем с созданием бензиновых моторов с высокой степенью сжатия нет и не было. А не делают их по следующей причине. При такте сжатия у таких двигателей давление в цилиндрах повышается до очень больших величин. Это, естественно, вызывает повышение температуры в камере сгорания и создает благоприятные условия для появления детонации. А детонация, как мы знаем (см. стр. 26) - явление опасное. Во всех созданных до этого времени двигателях степень сжатия была постоянной и определялась в зависимости от давления и температурного режима в камере сгорания при максимальной нагрузке, когда расход топлива и воздуха максимальны. Работает двигатель в таком режиме не всегда, можно сказать, даже очень редко. На трассе или в городе, когда скорость практически постоянна, мотор работает при малых или средних нагрузках. В такой ситуации для более эффективного использования энергии топлива неплохо бы иметь и большую степень сжатия. Эту проблему решили инженеры SAAB - создатели технологии SVC.

Технология SVC

Прежде всего необходимо отметить, что в новом двигателе вместо традиционной головки блока и гильз цилиндров, которые отливались непосредственно в блоке или запрессовывались, имеется одна моноголовка, объединившая головку блока и гильзы цилиндров. Для изменения степени сжатия, а точнее, объема камеры сгорания моноголовка сделана подвижной. С одной стороны она посажена на вал, выполняющий функцию опоры, а с другой - опирается и приводится в движение отдельным кривошипно-шатунным механизмом. Радиус кривошипа обеспечивает смещение головки относительно вертикальной оси на 40. Этого вполне достаточно, чтобы изменять объем камеры для получения степени сжатия от 8:1 до 14:1.

Необходимую степень сжатия определяет электронная система управления двигателем SAAB Trionic, которая следит за нагрузкой, скоростью, качеством топлива и на основании этого управляет гидроприводом кривошипа. Так, при максимальной нагрузке устанавливается степень сжатия 8:1, а при минимальной - 14:1. Объединение гильз цилиндров с их головкой, кроме всего прочего позволило инженерам SAAB придать каналам рубашки охлаждения более совершенную форму, что повысило эффективность процесса отвода тепла от стенок камеры сгорания и гильз цилиндров.

Подвижность гильз цилиндров и их головки потребовали внесения изменений в конструкцию блока двигателя. Плоскость стыка блока и головки стала ниже на 20 см. Что касается герметичности стыка, то она обеспечивается резиновой гофрированной прокладкой, которая сверху защищена от повреждений металлическим кожухом.

Мал, да удал

Для многих может стать непонятным, как в двигатель с таким небольшим объемом «зарядили» больше двухсот «лошадей» - ведь такая мощность может отрицательно сказаться на его ресурсе. Создавая двигатель SVC, инженеры руководствовались совсем другими задачами. Доведение моторесурса до требуемых норм - дело технологов. Что касается малого объема двигателя, то сделано в полном соответствии с теорией ДВС. Исходя из ее законов наиболее благоприятный режим работы двигателя с точки зрения повышения КПД - при большой нагрузке (на повышенных оборотах), когда дроссельная заслонка полностью открыта. В этом случае он максимально использует энергию топлива. А так как двигатели с меньшим рабочим объемом работают в основном при максимальных нагрузках, то и КПД у них выше.

Секрет превосходства малолитражных двигателей по показателю КПД объясняется отсутствием так называемых насосных потерь. Возникают они при небольших нагрузках, когда двигатель работает на малых оборотах и дроссельная заслонка лишь немного приоткрыта. В этом случае при такте впуска в цилиндрах создается большое разряжение - вакуум, оказывающий сопротивление движению поршня вниз и соответственно снижающий КПД. При полностью открытой дроссельной заслонке таких потерь нет, так как воздух поступает в цилиндры практически беспрепятственно.

Чтобы избежать насосных потерь на все 100%, в новом двигателе инженеры SAAB также использовали «наддув» воздуха под высоким давлением - 2,8 атм., с помощью механического нагнетателя - компрессора. Предпочтение компрессору было отдано по нескольким причинам: во-первых, ни один турбонагнетатель не способен создать такое давление наддува; во-вторых, реакция компрессора на изменение нагрузки практически мгновенная, т.е. нет замедления, характерного для турбонаддува. Наполнение цилиндров свежим зарядом в двигателе SAAB улучшили и с помощью популярного сегодня современного газораспределительного механизма, в котором на каждый цилиндр приходится по четыре клапана, и благодаря применению промежуточного охладителя воздуха (Intercooler).

Опытный образец двигателя SVC, по оценке немецкой компании по разработке моторов FEV Motorentechnie в Aachen, является вполне работоспособным. Но несмотря на положительную оценку, в серийное производство он будет запущен спустя некоторое время - после его доработки и доводки под запросы покупателей.

Все чаще звучат авторитетные мнения, что сейчас развитие двигателей внутреннего сгорания достигло наивысшего уровня и больше невозможно заметно улучшить их характеристики. Конструкторам остается заниматься ползучей модернизацией, шлифуя системы наддува и впрыска, а также добавляя все больше электроники. С этим не соглашаются японские инженеры. Свое слово сказала компания Infiniti, которая построила двигатель с изменяемой степенью сжатия. Будем разбираться, в чем преимущества такого мотора, и какое у него будущее.

В качестве вступления напомним, что степенью сжатия называют отношение объема над поршнем, находящимся в нижней «мертвой» точке, к объему, когда поршень находится в верхней. Для бензиновых двигателей этот показатель составляет от 8 до 14, для дизелей — от 18 до 23. Степень сжатия задается конструкцией фиксировано. Рассчитывается она в зависимости от октанового числа применяемого бензина и наличия наддува.

Возможность динамически изменять степень сжатия в зависимости от нагрузки позволяет поднять КПД турбированного мотора, добившись того, чтобы каждая порция топливовоздушной смеси сгорала при оптимальном сжатии. Для малых нагрузок, когда смесь обедненная, используется максимальное сжатие, а в нагруженном режиме, когда бензина впрыскивается много и возможна детонация, мотор сжимает смесь минимально. Это позволяет не регулировать «назад» угол опережения зажигания, который остается в наиболее эффективной позиции для снятия мощности. Теоретически система изменения степени сжатия в ДВС позволяет до двух раз уменьшить рабочий объем мотора при сохранении тяговых и динамических характеристик.

Схема двигателя с изменяемым объемом камеры сгорания и шатуны с системой подъема поршней

Одной из первых появилась система с дополнительным поршнем в камере сгорания, который перемещаясь, изменял ее объем. Но сразу возник вопрос о размещении еще одной группы деталей в головке блока, где уже и так теснились распредвалы, клапаны, инжекторы и свечи зажигания. Притом нарушалась оптимальная конфигурация камеры сгорания, отчего топливо сжигалось неравномерно. Поэтому система так и осталась в стенах лабораторий. Не пошла дальше эксперимента и система с поршнями изменяемой высоты. Разрезные поршни были чрезмерно тяжелыми, притом сразу возникли конструктивные трудности с управлением высотой подъема крышки.

Система подъема коленвала на эксцентриковых муфтах FEV Motorentechnik (слева) и траверсный механизм для изменения высоты подъема поршня

Другие конструкторы пошли путем управления высотой подъема коленвала. В этой системе опорные шейки коленвала размещены в эксцентриковых муфтах, приводимых в действие через шестерни электромотором. Когда эксцентрики поворачиваются, коленвал поднимается или опускается, отчего, соответственно, меняется высота подъема поршней к головке блока, увеличивается или уменьшается объем камеры сгорания, и изменяется тем самым степень сжатия. Такой мотор показала в 2000 году немецкая компания FEV Motorentechnik. Система была интегрирована в турбированный четырехцилиндровый двигатель 1.8 л от концерна Volkswagen, где варьировала степень сжатия от 8 до 16. Мотор развивал мощность 218 л.с. и крутящий момент 300 Нм. До 2003 года двигатель испытывался на автомобиле Audi A6, но в серию не пошел.

Не слишком удачливой оказалась и обратная система, также изменяющая высоту подъема поршней, но не за счет управления коленвалом, а путем подъема блока цилиндров. Действующий мотор подобной конструкции продемонстрировал в 2000 году Saab, и также тестировал его на модели 9-5, планируя запустить в серийное производство. Получивший название Saab Variable Compression (SVC) пятицилиндровый турбированный двигатель объемом 1,6 л, развивал мощность 225 л. с. и крутящий момент 305 Нм, при этом расход топлива при средних нагрузках снизился на 30%, а за счет регулируемой степени сжатия мотор мог без проблем потреблять любой бензин — от А-80 до А-98.

Система двигателя Saab Variable Compression, в которой степень сжатия изменяется за счет отклонения верхней части блока цилиндров

Задачу подъема блока цилиндров в Saab решили так: блок был разделен на две части — верхнюю с головкой и гильзами цилиндров, и нижнюю, где остался коленвал. Одной стороной верхняя часть была связана с нижней через шарнир, а на другой был установлен механизм с электроприводом, который, как крышку у сундука, приподнимал верхнюю часть на угол до 4 градусов. Диапазон степени сжатия при поднимании - опускании мог гибко варьироваться от 8 до 14. Для герметизации подвижной и неподвижной частей служил эластичный резиновый кожух, который оказался одним из самых слабых мест конструкции, вместе с шарнирами и подъемным механизмом. После приобретения Saab корпорацией General Motors американцы закрыли проект.

Проект МСЕ-5 в котором применен механизм с рабочим и управляющим поршнями, связаными через зубчатое коромысло

На рубеже веков свою конструкцию мотора с изменяемой степенью сжатия предложили и французские инженеры компании MCE-5 Development S.A. Показанный ими турбированный 1.5-литровый мотор, в котором степень сжатия могла варьироваться от 7 до 18, развивал мощность 220 л. с. и крутящий момент 420 Нм. Конструкция тут довольно сложная. Шатун разделен и снабжен наверху (в части, устанавливаемой на коленвал) зубчатым коромыслом. К нему примыкает другая часть шатуна от поршня, оконечник которой имеет зубчатую рейку. С другой стороной коромысла связана рейка управляющего поршня, приводимого в действие через систему смазки двигателя посредством специальных клапанов, каналов и электропривода. Когда управляющий поршень перемещается, он воздействует на коромысло и высота поднятия рабочего поршня изменяется. Двигатель экспериментально обкатывался на Peugeot 407, но автопроизводитель не заинтересовался данной системой.

Теперь свое слово решили сказать конструкторы Infiniti, представив двигатель с технологией Variable Compression-Turbocharged (VC-T), позволяющей динамически изменять степень сжатия от 8 до 14. Японские инженеры применили траверсный механизм: сделали подвижное сочленение шатуна с его нижней шейкой, которую, в свою очередь, связали системой рычагов с приводом от электромотора. Получив команду от блока управления, электродвигатель перемещает тягу, система рычагов меняет положение, регулируя тем самым высоту подъема поршня и, соответственно, изменяя степень сжатия.

Конструкция системы Variable Compression у мотора Infiniti VC-T: а - поршень, b - шатун, с - траверса, d - коленвал, е - электродвигатель, f - промежуточный вал, g - тяга.

За счет данной технологии двухлитровый бензиновый турбомотор Infiniti VC-T развивает мощность 270 л.с., оказываясь на 27% экономичнее других двухлитровых двигателей компании, имеющих постоянную степень сжатия. Японцы планируют запустить моторы VC-T в серийное производство в 2018 году, оснастив ими кроссовер QX50, а затем и другие модели.

Заметим, что именно экономичность выступает сейчас основной целью разработки моторов с изменяемой степенью сжатия. При современном развитии технологий наддува и впрыска, нагнать мощности в моторе для конструкторов не составляет больших проблем. Другой вопрос: сколько бензина в супернадутом двигателе будет вылетать в трубу? Для обычных серийных моторов показатели расхода могут оказаться неприемлемы, что и выступает ограничителем для надувания мощности. Японские конструкторы решили этот барьер преодолеть. Как считают в компании Infiniti, их бензиновый двигатель VC-T, способен выступить как альтернатива современным турбированным дизелям, показывая тот же расход топлива при лучших характеристиках по мощности и более низкой токсичности выхлопа.

Каков итог?

Работы над двигателями с изменяемой степенью сжатия ведутся уже не один десяток лет — этим направлением занимались конструкторы Ford, Mercedes-Benz, Nissan, Peugeot и Volkswagen. Инженерами исследовательских институтов и компаний по обе стороны Атлантики получены тысячи патентов. Но пока ни один такой мотор не пошел в серийное производство.

Не все гладко и у Infiniti. Как признаются сами разработчики мотора VC-T, у их детища пока остаются общие проблемы: возросла сложность и стоимость конструкции, не решены вопросы с вибрацией. Но японцы надеются доработать конструкцию и запустить ее в серийное производство. Если это произойдет, то будущим покупателям осталось только понять: сколько придется переплатить за новую технологию, насколько такой мотор будет надежен и сколько позволит экономить на топливе.



← Вернуться

×
Вступай в сообщество «auto-piter.ru»!
ВКонтакте:
Я уже подписан на сообщество «auto-piter.ru»