Водородный двигатель автомобиля: лекарство от нефтяной зависимости. Водородный двигатель. Принцип работы

Подписаться
Вступай в сообщество «auto-piter.ru»!
ВКонтакте:

После того как все государства мира объявили курс на снижение выбросов вредных веществ, производители транспортных средств задумались . Причём они начали вести разработки не только в области электромобилей, но и в направлении использования водорода в качестве топлива для автомобилей. При этом различные компании рассматривают собственные технологии, которые обладают массой . Поэтому стоит подробнее рассмотреть авто на водороде, чтобы понять, что может ожидать нас в ближайшем будущем.

Автомобили на водороде — это довольно перспективное направление в поиске альтернативных источников энергии

Различные методы

Двигатель внутреннего сгорания

Вспомните, почему водород называют «гремучим газом» - правильно, он очень легко взрывается с выделением огромного количества энергии. Почему бы не использовать эту его особенность для приведения в движение автомобилей? Именно так решили специалисты компаний Mazda и BMW, которые несколько лет назад представили свои прототипы автомобилей, работающих на водороде, поступающем внутреннего сгорания.

При этом инженеры BMW вполне справедливо решили, что экспериментировать лучше с более крупным двигателем, который позволит варьировать технические характеристики в очень широком диапазоне. Так появился на свет автомобиль седьмой серии, который оснащался крупным баком для сжатого водорода - при рабочем объёме мотора он обладал производительностью всего в 260 лошадиных сил и расходовал около 50 литров горючего на сто километров пути. Кроме того, фирма BMW экспериментировала и с автомобилями на сжиженном водороде - для этого использовались специальные криогенные баки, которые обладали , сопоставимой с ценой самой платформы машины - это делалось для увеличения запаса хода. Однако отличительной чертой всех экспериментальных автомобилей BMW, работавших на водороде, было наличие традиционной бензиновой системы питания - она позволяла перейти на обычное горючее при исчерпании запаса водорода или при неполадках, связанных с его подачей.

А вот Mazda пошла другим путём, решив не ограничиваться в своих экспериментах - японцы смонтировали установку питания водородом на автомобиле RX-8, оснащённом Ванкеля объёмом 1,3 литра. К сожалению, результат оказался провальным - мощность упала с 240 до 100 лошадиных сил, в расход топлива возрос почти до 60–70 литров на сотню километров. В отличие от BMW 7, которая сдавалась в лизинг в США и странах Европы, Mazda RX-8, работающая на водороде, так и осталась в виде прототипа. В настоящее время обе компании свернули эти исследовательские программы, сосредоточившись на других направлениях развития альтернативной энергетики.

Видео об автомобилях на водороде:

Причину понять легко, если углубиться в отчёты инженеров - они столкнулись с такими , как:

  • Сниженный ресурс мотора;
  • Частые поломки, связанные с разрушением стенок цилиндров, клапанов и поршней;
  • Малый запас хода;
  • Частые утечки, грозящие возгоранием или даже взрывом.

Конечно, многие небольшие исследовательские институты создавали водородные автомобили, работавшие по принципу сгорания «гремучего газа», и обладавшие лучшими характеристиками, чем . Однако стало понятно, что двигатель автомобиля необходимо изначально разрабатывать под водород - а производители оказались не готовыми к таким сомнительным инвестициям.

Топливные ячейки

Решение проблемы пришло из области космонавтики - так как сжигать горючее для получения электроэнергии на орбите нерационально, учёные разработали специальные топливные ячейки, в которых протекала химическая реакция с выделением огромного количества электроэнергии. При прохождении водорода сквозь такую ячейку, наполненную каталитическим материалом, происходит его соединение с кислородом, в результате которого образуется вода. Соответственно, пользователь получает только плюсы - никаких вредных веществ, на выходе только чистая вода и определённый запас электроэнергии . Остаётся только запастись нужным количеством водорода.

Автомобиль на водороде, работающий с применением топливных ячеек, функционирует - в нём отсутствует двигатель внутреннего сгорания, который полностью заменён электрическим мотором. Энергия, полученная от реакции водорода с кислородом, накапливается в аккумуляторах - а некоторые производители, ориентированные на достижение автомобилем хороших динамических характеристик, используют суперконденсаторы, которые позволяют максимально быстро отдавать полученный заряд. Благодаря этому преодолевается один из недостатков топливных ячеек на водороде - они являются инертными, то есть не могут изменять свою отдачу по желанию водителя автомобиля.

Основные преимущества

Основной плюс, которым обладает машина на водороде, использующая топливные ячейки в качестве источника энергии - сочетание в ней лучших характеристик автомобилей с двигателями внутреннего сгорания и электромобилей. Запас хода очень высок - особенно в случае, когда не только от реакции водорода с кислородом, но и от обычной электрической сети. Вместе с тем отсутствие агрегата, сжигающего углеводородное топливо, позволяет получить просто огромное количество преимуществ :

  • Отсутствие вредных выбросов - как и при сгорании водорода, в топливных ячейках образуется только водяной пар, который не наносит вреда окружающей среде.
  • Меньшая масса - кстати, комбинация водородных топливных ячеек, электродвигателя и аккумуляторов имеет меньшие габариты и вес, чем у батарей и мотора в традиционном электромобиле при сходных характеристиках и запасе хода.
  • Уменьшение количества движущихся и соприкасающихся между собой частей в несколько раз - за счёт этого существенно повышается ресурс эксплуатации .

Если же рассматривать водородный автомобиль, который оснащается двигателем внутреннего сгорания, адаптированным к этому виду топлива, то пока у него больше минусов, чем положительных сторон. Однако отчёты научно-исследовательских институтов, которые занимаются разработками в этом направлении, позволяют надеяться на то, что в скором будущем ситуация коренным образом поменяется. Уже сообщается о том, что двигатели автомобилей, которые изначально создавались для работы на водороде, имеют :

  • Ресурс эксплуатации, увеличенный на 20–30%, а также уменьшенная вероятность возникновения меньших поломок.
  • Мощность, большая на 15–20%, больший КПД, означающий лучшее использование энергетического потенциала горючего.
  • Стоимость пробега, в 2 раза меньшая, чем аналогичный показатель для бензина - однако только при условии промышленного производства водорода.

Вот только стоимость , очень уж высока - как в силу применения дорогостоящих инновационных материалов, так и благодаря штучному производству, ведущемуся по обходным технологиям.

Недостатки

К сожалению, не обходится и без минусов - впрочем, это касается не только водорода, но и всех прочих технологий альтернативной энергетики, работа над которыми ведётся относительно недавно. С точки зрения рядового потребителя пока существенным недостатком является высокая стоимость производства топлива - относительно недорого можно купить только водород, создаваемый в промышленных масштабах - он является редкостью, так как заводов по выпуску этого газа пока относительно немного. Кроме того, при проведении опросов в странах, где уже продано либо достаточно много автомобилей, работающих на водороде, результаты показали, что очень многие люди боятся взрыва «гремучего газа», хотя о таких случаях они даже не слышали. Действительно, на испытаниях нередко случались возгорания в результате утечки водорода, однако в серийное производство были отправлены только автомобили с многоуровневыми системами безопасности, предотвращающими возникновение взрыва.

Однако благодаря применению многих инновационных технических решений водородная машина является не только экономичной и безопасной, но и дорогой. В частности, никогда не разглашала стоимость автомобиля седьмой серии, работающего на водороде, разрешая только брать его в лизинг. Однако некоторые эксперты говорят о том, что его рыночная цена могла бы быть установлена на уровне 1,2–1,5 миллиона долларов. Даже наиболее дешёвые автомобили, выпускаемые Honda и Toyota, стоят не менее 30–50 тысяч долларов при минимальном уровне оснащения - и то, только благодаря демпинговой политике компаний и компенсациям, выделяемых правительством Японии. Стоит сказать и о том, что топливные ячейки и баки не могут быть долговечными в силу длительной эксплуатации в условиях агрессивной среды - и если ячейки можно выпускать в сменном виде, то на придётся затратить немало денег.

Пришло время поговорить о главном - где заправлять автомобиль, работающий на водороде? Говорить о создании сети заправок даже в Японии, США и Германии очень рано - пока они представляют собой единичные экземпляры. В то же время строительство соответствующей инфраструктуры для электромобилей идёт полным ходом, что позволяет получить сведения о приоритетах, которые устанавливаются современным обществом и государственными учреждениями. Заправлять водородом машину с использованием самодельных приспособлений очень опасно - вероятность взрыва будет невероятно высокой.

Топливо будущего или нет?

Сейчас приходится слышать о том, что водород является топливом будущего - однако стоит вспомнить о том, что подобные слоганы звучали во всём мире ещё в конце 60-х годов - причём Советский Союз, в котором исследования свойств этого газа шли полным ходом, исключением не был. Несмотря на всё прошедшее время, водородные автомобили так и остались прототипами, не слишком пригодными к серийному производству и эксплуатации общего пользования. Однако разработки не прекращаются, несмотря на то, что пока положительные результаты были достигнуты только единичными компаниями, начавшими мелкосерийное изготовление таких автомобилей. Кроме того, необходимо вспомнить о том, что водород является даже для окружающей среды источником энергии, чем электричеством. Ведь несмотря на развитие энергетики, в мире до 70% электростанций работают на таких «грязных» видах топлива, как нефть и уголь.

Водород (H2) - это альтернативное топливо, которое получают из углеводородов, биомассы, мусора. Водород помещают в топливные элементы (что-то вроде бензобака для топлива) и автомобиль перемещается, используя энергию водорода.

Хотя водород пока рассматривается только как альтернативное топливо будущего, правительство и промышленность работают над чистым, экономичным и безопасным производством водорода для электрических автомобилей на топливных элементах (FCEV). FCEV уже поступают на рынок в регионах, где немного развита инфраструктура водородных заправок. Рынок также развивается для спецтехники: автобусов, погрузочно-разгрузочного оборудования (например, вилочных погрузчиков), наземного вспомогательного оборудования, средних и больших грузовиков.

Автомобили на водороде Toyota, GM, Honda, Hyundai, Mercedes-Benz понемногу появляются в дилерских сетях. Стоят такие машины в районе 4-6 миллионов рублей (Toyota Mirai - 4 млн. руб., Honda FCX Clarity - 4 млн. руб.).

Ограниченными сериями выпускаются:

  • BMW Hydrogen 7 и Mazda RX-8 hydrogen — двухтопливные (бензин/водород) легковые автомобили. Используют жидкий водород.
  • Audi A7 h-tron quattro — электро-водородный гибридный легковой автомобиль.
  • Hyundai Tucson FCEV
  • Ford E-450. Автобус.
  • Городские автобусы MAN Lion City Bus.

Испытывают:

  • Ford Motor Company — Focus FCV;
  • Honda — Honda FCX;
  • Hyundai Nexo
  • Nissan — X-TRAIL FCV (топливные элементы компании UTC Power);
  • Toyota — Toyota Highlander FCHV
  • Volkswagen — space up!;
  • General Motors;
  • Daimler AG — Mercedes-Benz A-Class;
  • Daimler AG — Mercedes-Benz Citaro (топливные элементы компании Ballard Power Systems);
  • Toyota — FCHV-BUS;
  • Thor Industries — (топливные элементы компании UTC Power);
  • Irisbus — (топливные элементы компании UTC Power);

Водород обилен в окружающей среде. Он хранится в воде (H2O), углеводородах (метан, CH4) и других органических веществах. Проблема водорода как топлива в эффективности его извлечения из этих соединений.

При извлечении водорода, в зависимости от источника, в атмосферу попадают вредные для окружающей среды выбросы. При этом, автомобиль работающий на водороде, в качестве выхлопных газов выделяет только водяной пар и теплый воздух, у него нулевой уровень выбросов.

ВОДОРОД В КАЧЕСТВЕ АЛЬТЕРНАТИВНОГО ТОПЛИВА

Интерес к водороду как альтернативному транспортному топливу обусловлен:

  • способностью использовать топливные элементы в FCEV с нулевым уровнем выбросов;
  • потенциалом для внутреннего производства;
  • быстрой заправкой автомобилей (3-5 минут);
  • по расходу и цене, топливные элементы до 80 процентов эффективнее обыкновенного бензина

В Европе стоимость заправки полного бака водорода емкостью в 4.7 килограмма обойдется в 3 369 рублей (717 рублей за килограмм). На полном баке Toyota Mirai в среднем проезжает 600 километров, итого 561 рубль на 100 километров. Для сравнения, цена 95-го бензина равна 101 рубль, т.е. 10л бензина обойдется в 1010 рублей или 6 060 рублей за 600 километров. Цены на 2018 год.

Данные розничных водородных заправочных станций, собранные и проанализированные Национальной лабораторией возобновляемых источников энергии, показывают, что среднее время на заправку FCEV, составляет менее 4 минут.

Топливный элемент, соединенный с электродвигателем, в два-три раза быстрее и экономичнее, чем двигатель внутреннего сгорания, работающий на бензине. Водород используют и как топливо для двигателей внутреннего сгорания (BMW Hydrogen 7 и Mazda RX-8 hydrogen). Однако, в отличие от FCEV, такие двигатели выпускают вредные выхлопные газы, не такие мощные как водородные и быстрее подвержены износу.

В 1 килограмме газообразного водорода столько же энергии как в бензине объемом 1 галлон (6,2 фунта, 2,8 килограмма). Поскольку в водороде низкая объемная плотность энергии, он хранится на борту транспортного средства в виде сжатого газа. В машинах водород хранится в резервуарах высокого давления (топливных элементах), способных хранить водород на 5000 или 10000 фунтов на квадратный дюйм (psi). Например, FCEV, выпускаемые автопроизводителями и доступные в автосалонах, имеют емкость в 10 000 фунтов на квадратный дюйм. Розничные диспенсеры, которые в основном расположены на автозаправочных станциях, заполняют такие резервуары за 5 минут. Разрабатываются и другие технологии хранения, включая химическое соединение водорода с металл гидридом или низкотемпературными сорбционными материалами.

Заправочных станций на водородные машины почти нет, следите за динамикой - в 2006 году в мире насчитывалось 140 заправок, а к 2008 году 175. Чувствуете, за 2 года построено 35 станций, 45% из которых находятся в США и Канаде. К 2018 году число станций равно приблизительно 300 единицам. Еще есть мобильные станции и домашние, точное число которых не известно.

КАК РАБОТАЕТ ТОПЛИВНЫЙ ЭЛЕМЕНТ

Прокачивая кислород и водород через катоды и аноды, которые контактируют с платиновым катализатором, происходит химическая реакция, в результате которой получается вода и электрический ток. Набор из нескольких элементов (ячеек) необходим, чтобы увеличить заряд в 0,7 вольт в одной ячейке, что приводит к увеличению напряжения.

Ниже смотрите схему, как получается топливный элемент.


ГДЕ ЗАПРАВЛЯТЬ ВОДОРОДОМ АВТОМОБИЛИ

Революция водородных топливных элементов не начнется без достаточного потребителю количества водородных АЗС, поэтому отсутствие инфраструктуры водородных заправочных станций по-прежнему тормозит развитие водорода как . Американцы уже давно видят на своих улицах машины, передвигающиеся на топливных элементах, например, Honda FCX Clarity, которые каждый день перевозят людей на работу и с работы. Почему же до сих пор нет заправочных станций?

Хотим отметить, что в статье обсуждается американский рынок, ибо в России, о водородном топливе для автомобилей пока говорить нечего, его тут просто нет. И причина не в лобби нефтяных магнатов, просто в России не та экономика, чтобы АВТОВаз начал исследования в этой области. Япония и Америка, в отличие от России, уже давно исследуют этот альтернативный источник топлива и ушли далеко вперед (первый автомобиль на водороде в США появился в 1959 году)

Рядовому Американцу, в зависимости, где он живет, возможно, придется немного подождать появления водородных заправочных станций. Еще пять лет назад общественное мнение сходилось на том, что «водородные автомобильные дороги» будут стимулировать будущее. В США планировалась стройка станций вдоль Калифорнийского побережья, от Мэна до Майами.

ТЕНДЕНЦИЯ СОЗДАНИЯ ЗАПРАВОЧНЫХ ВОДОРОДНЫХ СТАНЦИЙ

Северная Америка, Канада

Пять станций построены в Британской Колумбии (западная провинция Канады) с 2005 года. Больше станций строить в Канаде не будут, проект завершился в марте 2011 года.

Соединенные Штаты

Аризона: прототип водородной заправочной станции построен по всем правилам безопасности для окружающей среды в Финиксе, чтобы доказать возможность строительства таких заправочных станций в городских районах.

Калифорния: В 2013 году губернатор Браун подписал законопроект о финансировании 20 миллионов в год в течение 10 лет на 100 станций. Комиссия по энергетике Калифорнии выделила 46,6 млн. долларов США на 28 станций, которые будут завершены в 2016 году, что наконец приблизит отметку в 100 станций в заправочной сети Калифорнии. По состоянию на август 2018 года в Калифорнии открыто 35 станций и еще 29 ожидается до 2020 года.

Гавайи открыли первую водородную станцию в Хикаме в 2009 году. В 2012 году компания Aloha Motor Company открыла водородную станцию в Гонолулу.

Массачусетс: французская компания Air Liquide завершила строительство новой водородной заправочной станции в Мэнсфилде в октябре 2018 года. Единственная водородная заправочная станция в штате Массачусетс расположенная г. Биллерика (40 243 жителей), в штаб-квартире компании Nuvera Fuel Cell s, изготавливающей водородные топливные элементы.

Мичиган: В 2000 году Ford и Air Products открыли первую водородную станцию в Северной Америке в Дирборне, штат Мичиган.

Огайо: В 2007 году в кампусе Государственного университета штата Огайо в Центре автомобильных исследований открылась водородная заправочная станция. Единственная на все Огайо.

Вермонт: водородная станция построена в 2004 году в городе Берлингтон. Проект частично профинансирован через Программу водородного водоснабжения Министерства энергетики Соединенных Штатов.

Азия

Япония: В период с 2002 по 2010 год в Японии по проекту JHFC было введено несколько заправочных станций с водородом для тестирования технологий производства водорода. В конце 2012 года было установлено 17 водородных станций, в 2015 году установлено 19. Правительство рассчитывает создать до 100 водородных станций. В бюджете для этого выделено 460 млн. долларов США, что покрывает 50% расходов инвесторов. JX Energy установило 40 станций к 2015 году и еще 60 в период 2016-2018 годов. Toho Gas и Iwatani Corp установили 20 станций в 2015 году. Тойота и Air Liquide создали совместное предприятие для строительства 2 водородных станций, которые построили в 2015 году. Осака-газ построили 2 станции за 2014-2015 годы.

Южная Корея: В 2014 году, в Южной Корее введена в эксплуатацию одна водородная станция еще на 10 станций, запланированных на 2020 год.

Европа

По состоянию на 2016 год в Европе работают более 25 станций, способных заполнять 4-5 автомобилей в день.

Дания: В 2015 году в сети водородных сетей было 6 общественных станций. H2 Logic, входящая в NEL ASA, строит завод в Хернинге для выпуска 300 станций в год, каждая из которых может выдавать 200 кг водорода в день и 100 кг за 3 часа.

Финляндия: В 2016 году в Финляндии работают 2 + 1 (Voikoski, Vuosaari) общественные станции, одна из них подвижная. Станция заправляет автомобиль 5 килограммами водорода за три минуты. Завод по созданию водорода работает в г. Коккола, Финляндия.

Германия: По состоянию на сентябрь 2013 года работает 15 общедоступных водородных станций. Большинство, но не все из этих станций эксплуатируются партнерами Clean Energy Partnership (CEP). По инициативе H2 Mobility число станций в Германии должно возрасти до 400 станций в 2023 году. Цена проекта 350 миллионов евро.

Исландия: Первая коммерческая водородная станция открыта в 2003 году в рамках инициативы страны по движению в сторону "водородной экономики".

Италия: С 2015 года в Больцано открыта первая коммерческая водородная станция.

Нидерланды: Нидерланды открыли первую общественную автозаправочную станцию 3 сентября 2014 года в Роуне близ Роттердама. Станция использует водород из трубопровода из Роттердама в Бельгию.

Норвегия: В феврале 2007 года открыта первая в Норвегии водородная заправочная станция Hynor. Uno-X в партнерстве с NEL ASA планирует построить до 20 станций до 2020 года, включая станцию с производством водорода на месте из избыточной солнечной энергии.

Объединенное Королевство

В 2011 году открылась первая общественная станция в Суиндоне. В 2014 году HyTec открыл станцию London Hatton Cross. 11 марта 2015 года проект по расширению сети водородных сетей в Лондоне открыл первый супермаркет, расположенный на заправочной станции для водорода в Sensbury"s Hendon.

Калифорния впереди планеты всей в области финансирования и строительства водород -заправочных станций для FCEV. По состоянию на середину 2018 года в Калифорнии было открыто 35 розничных водородных станций, а еще 22 - на разных этапах строительства или планирования. Калифорния продолжает финансировать строительства инфраструктуры, а Энергетическая комиссия имеет право выделять до 20 млн. долларов США в год до 2024 года, пока не заработает 100 станций. Для северо-восточных штатов планируют построить 12 розничных станций. Первые откроются к концу 2018 года. Некоммерческие станции в Калифорнии и станции построенные в остальных штатах США обслуживают легковые FCEV, автобусы, а также используют для исследовательских и демонстрационных целей.

Расходы на содержание водородных станций

Водородным заправкам не так-то просто заменить обширную сеть бензозаправочных станций (в 2004 году 168 000 точек в Европе и США). Замена бензиновых станций на водородные стоит полтора триллиона долларов США. При этом цена обустройства водородной топливной сети в Европе может быть в пять раз ниже чем цена заправочной сети для электромобилей. Цена одной EV - станции от 200 000 до 1 500 000 рублей. Цена водородной станции - 3 миллиона долларов. При этом, водородная сеть будет все равно дешевле сети станций для электромобилей по окупаемости. Причина в быстрой заправке водородных автомобилей (от 3 до 5 минут). На миллион автомобилей на топливных водородных элементах требуется меньше водородных станций, чем зарядных станций на миллион аккумуляторных электромобилей.

В будущем вопрос заправки водородом будет решаться для человека в зависимости от его места жительства. АЗС будут заправлять автомобили водородом, доставленным на танкерах с крупных предприятий по реформингу топлива. Поставки с таких предприятий ничем не будут уступать поставкам бензина с нефтеперегонных заводов. В перспективе, местные водородные заводы научаться извлекать пользу из местных ресурсов и из возобновляемых источников энергии.

СПОСОБЫ ДОБЫЧИ ВОДОРОДА

  • паровая конверсия метана и природного газа;
  • электролиз воды;
  • газификация угля;
  • пиролиз;
  • частичное окисление;
  • биотехнологии

Паровой риформинг метана

Способ отделения водорода путем парового метанового реформинга применим к ископаемому топливу, например, к природному газу - его нагревают и добавляют катализатор. Природный газ не возобновляемый источник энергии, но пока он есть и добывается из недр земли. Министерство энергетики утверждает, что выбросы автомобилей, работающих на реформированном водороде, вдвое меньше, чем у автомобилей, работающих на бензине. Производство реформированного водорода уже запущен на полную катушку и добывать водород таким способом дешевле, чем водород из других источников.

Газификация биомассы

Водород также добывают из биомассы - сельскохозяйственных отходов, отходов животноводства и сточных вод. Используя процесс, который называется газификация, биомассу помещают под воздействие температуры, пара и кислорода чтобы образовать газ, который после дальнейшей обработки дает чистый водород. «Существуют целые полигоны для сбора сельскохозяйственных отходов - готовые источники водорода, потенциал которых недооценен и тратится впустую», сетует директор по политике Ассоциации по исследованию водородной энергетики и топливных элементов, Джеймс Варнер.

Электролиз

Электролиз - процесс отделение водорода из воды при помощи электрического тока. Этот способ звучит проще, чем возня с ископаемым топливом и отходами животноводства, но у него есть недостатки. Электролиз конкурентоспособен в тех районах, где электричество дешевое (в России этом могла бы быть Иркутская область - 8 электростанций на область, 1 рубль 6 копеек за киловатт-час).

Солнечные водородные станции компании Honda используют энергию солнца и электролизер, чтобы отделить «Н» от «О» в Н2О. После отделения водород хранится в баке под давлением в 34.47 МПа (мегапаскаль). Используя только солнечную энергию, станция создает 5 700 литров водорода в год (этого топлива достаточно для одного автомобиля со средним годовым пробегом). При подключении к электрической сети, станция выдает до 26 тысяч литров в год.

«Как только водород получит нишу на топливном рынке, и как только на него будет спрос, станет ясно, какой способ извлечения водорода выгоден», говорит директор по политике Ассоциации по исследованию водородной энергетики и топливных элементов Джеймс Варнер. «Некоторые из способов производства водорода потребуют новых законов, регулирующих его добычу. Если водород будет пользоваться постоянным спросом, увидите, как начнут регулировать правила пользования сельскохозяйственными отходами и водой для электролиза».

Основную часть водорода, извлекаемого в Соединенных Штатах каждый год, применяют для переработки нефти, обработки металлов, производства удобрений и переработки пищевых продуктов.

УДЕШЕВЛЕНИЕ ТЕХНОЛОГИЙ ВОДОРОДНЫХ АВТОМОБИЛЕЙ И ИХ РАЗВИТИЕ

Еще одно препятствие для производителей автомобилей на водородном топливе - цена водородных технологий. Например, набор топливных элементов для автомобилей до настоящего момента, опирается на платину в качестве катализатора. Если приходилось покупать колечко из платины для любимой, высокая цена на метал вам известна.

Ученые из Лос-Аламосской национальной лаборатории доказали, что замена этого дорогого металла на более распространенные - железо или кобальт, в качестве катализатора возможна. А ученые из Case Western Reserve University разработали катализатор из углеродных нанотрубок, которые в 650 раз дешевле, чем платина. Замена платины как катализатора в топливных элементах, заметно снизит стоимость технологии водородных топливных элементов.

На этом исследования по совершенствованию водородного топливного элемента не заканчиваются. Mercedes разрабатывает технологию сжатия водорода до давления в 68.95 МПа (мегапаскаль), чтобы на борту автомобиля помещалось больше топлива, с передовым как дополнительным хранилищем энергии. "Если все получится, у автомобилей на водороде диапазон движения превысит 1000 км." считает доктор Герберт Колер, вице-президент Daimler AG.

Министерство энергетики США утверждает, что себестоимость сборки автомобилей с топливным элементом снижены на 30 процентов за последние три года и на 80 процентов за последнее десятилетие. Срок службы топливных элементов увеличился вдвое, но этого недостаточно. Для конкурентоспособности с электромобилями срок службы топливных элементов нужно увеличить в два раза. Нынешние автомобили с водородным топливным элементом, работают около 2 500 часов (или примерно 120 000 км), но этого мало. «Чтобы конкурировать с другими технологиями, нужно достичь результата в 5 000 часов, как минимум», говорит один из членов ученого совета министерской программы по топливным элементам.

Развитие технологий водородных топливных элементов снизит себестоимость производство автомобилей за счет упрощения механизмов и систем, но выгоду производители получат только при серийном выпуске. Препятствием на пути к массовому выпуску автомобилей на водороде, служит то, что нет оптовых поставок запчастей для автомобилей с водородным топливным элементом. Даже автомобиль FCX Clarity, который уже выпускается серией, не обеспечен дополнительными запчастями по оптовым ценам (просто они не пользовались поиском от ). Автопроизводители решают проблему по-своему, устанавливают топливные элементы водорода в дорогие модели для обкатки. Дорогие автомобили выпускаются в меньшем количестве, чем бюджетные, а значит и проблем с поставкой запчастей к ним нет. «Мы внедряем "водородную технологию" в люксовые автомобили и отслеживаем как она себя показывают на практике. Пока рынок принимает водородные автомобили, как лет 10 назад принимал технологию гибридов, автопроизводители в это время наращивают объемы водородных моделей, спускаясь по цепочке к бюджетным авто», говорит Стив Эллис, менеджер по продажам автомобилей с топливным элементом компании Honda.

ТОПЛИВНЫЕ ЭЛЕМЕНТЫ С ВОДОРОДНЫМ ТОПЛИВОМ В ПОЛЕВЫХ УСЛОВИЯХ

Начиная с 2008 года, компания Honda начала ограниченную лизинговую программу для 200 седанов FCX Clarity, которые передвигаются на водородных топливных элементах. Как итог, только 24 клиента из Южной Калифорнии, США, платили в течение трех лет ежемесячный взнос в 600 долларов. В 2011 году срок аренды закончился, и компания Honda продлила договора с этими клиентами и подключила новых к исследовательской кампании. Вот то, что компания узнала нового за время исследований:

  1. Водители FCX Clarity без проблем передвигались на короткие дистанции через город Лос-Анджелес и его округи (Honda утверждает, что диапазон движения FCX - 435 км).
  2. Отсутствие необходимой инфраструктуры - основное неудобство для арендаторов, которые живут вдалеке от водородных заправочных станций в Калифорнии. Большинство станций расположено недалеко от Лос-Анджелеса, привязывая автомобили к 240-километровой зоне.
  3. В среднем водители проезжали 19,5 тысяч км за год. Один из первых арендаторов только что пересек показатель в 60 тысяч км.
  4. Продавцы, которые отпускают в лизинг автомобили FCX Clarity проходят специальную подготовку "Как обучать клиентов обращаться с водородным автомобилем". «Продавцам задают вопросы, каких они прежде не слышали», говорит менеджер по продажам и маркетингу автомобилей Honda с топливными элементами, Стив Эллис.

ПОЛУЧИТ ЛИ "ВОДОРОДНАЯ" ПРОГРАММА ПОДДЕРЖКУ ПРАВИТЕЛЬСТВА?

Производители автомобилей и строители заправочных сетей сходятся во мнении, что снизить затраты в краткосрочной перспективе без вмешательства со стороны государства не выйдет. Что в США, однако, представляется маловероятным, при всех описанных денежных вливаниях местной администрации Штатов и Министерств.

С министром энергетики Стивеном Чу, администрация Обамы неоднократно пыталась сократить финансирование программы развития водородных топливных элементов, но до сих пор все эти сокращения отменял конгресс.

Акцент на аккумуляторных технологиях сторонникам водорода кажется недальновидным. «Это взаимодополняющие технологии», говорит Стив Эллис, представитель компании Honda. Технология, разработанная для FCX, например, развернута и на электромобиль Fit. «Считаем, что водородные топливные элементы в сочетании с электромобилями переплюнут все альтернативные источники энергии возглавив этого десятилетия».

Недовольны и те, кто платит из своего кармана за возведение новых заправочных станций. Говорят, что не отказались бы от помощи государства до тех пор, пока не увеличится спрос на водородный вид топлива и не снизятся затраты на возобновляемые источники энергии.

Том Салливан верит в энергетическую независимость настолько сильно, что вложил все деньги, полученные от сети супермаркетов в компанию SunHydro, компанию, которая строит водородные заправочные станции на солнечных батареях. Том считает, что целевое снижение налогов могло бы стимулировать предпринимателей вкладывать деньги в строительство водородных станций, работающих от солнечной энергии. «Необходим стимул, чтобы люди вкладывались в такие предприятия», говорит Том. «Люди в трезвом уме, вероятно, не станут вкладывать деньги в строительство водородных заправочных станций».

Для Стива Эллиса из компании Honda этот вопрос как практический, так и политический. «Технология водородного топлива помогает обществу сэкономить на топливе и сберечь экологию", говорит Стив. «Если это так, то поможет ли общество самому себе перейти на альтернативный вид топлива?»

Минус альтернативных источников топлива уже применяемых в автомобилях, типа растительного масла (об этом подробней тут) или природного газа, в том, что они не возобновляемы, в отличие от водородного топлива.

ИТОГ

Минусы водородного топлива:

  • добыча водорода пока не совершенна и загрязняет окружающую среду;
  • обустройство сети водородных заправочных станций стоит дорого (полтора триллиона долларов США);
  • владельцы машин привязаны к заправочным станциям (вы заложник штата Калифорния, дальше не уедешь).

Плюсы водородного топлива:

  • у водородных автомобилей нулевой уровень выбросов, бережем природу;
  • быстрая заправка (от 3 до 5 минут);
  • экономически водород выигрывает у бензиновых автомобилей по цене расхода топлива (600 км за 3 369 рублей на водороде против 6 060 рублей за путешествие на бензине).

А теперь настало время научного видео!

Последний энергетический кризис прокатился по миру в далеком 2008 году, и может показаться, что проблем с количеством нефти уже не возникает: нормы выработки становятся больше, а цена – ниже. Но несмотря на это, никто не может отрицать того, что запасы топлива на планете уменьшаются. Автомобильные концерны оплачивают исследования и разработки альтернативных видов топлива. Двигатель Риваза, работающий на воде, появился еще в начале XIX века. Изобретение было представлено в 1806 году и являлось первым двигателем внутреннего сгорания, обогнав бензиновые и газовые двигатели. Разработчики долгое время пытались продолжить разработку в этом направлении, но для того, чтобы провести электролиз и получить необходимое количество энергии требовалось много электричества, что делало такой вид топлива нерентабельным. В конце концов, это в сочетании с взрывоопасностью и поставило точку на исследованиях.

Возврат к водороду произошел в конце 50-х гг. прошлого века: топливный элемент был установлен на тракторы в США. Через три года – в 1962 году – водородный двигатель появился в маленьких автомобилях для гольфа, еще через пять – в мотоциклах. Водород в двигателях внутреннего сгорания (ДВС) может использоваться в двух вариантах: как гибридный двигатель и как топливный элемент.

Гибридный водородный двигатель

Гибридный водородный двигатель используется в качестве присадки в двигателях внутреннего сгорания к бензину или газу. При использовании водорода улучшается воспламеняемость топлива, но из-за высокой степени летучести газа повышается риск воспламенения. Но несмотря на этот недостаток, уменьшается коррозия металлов и вибрация. Для применения водорода нет необходимости в устройстве дополнительного топливного бака, водород вырабатывается из дистиллированной воды. При использовании водорода расстояние, которое можно проехать, увеличивается на 30 процентов. Безопасное использование газа возможно при низких температурах до -30⁰С и при относительно высоких до +30⁰С.

Топливный элемент

Двигатели с топливным элементом самостоятельно производят электроэнергию путем расщепления водорода на отрицательные электроны и положительные протоны. Использование таких двигателей приносит пользу при больших объемах, поэтому чаще всего применяются в большегрузах. На данный момент в Дании, США и Японии тестируют железнодорожные составы, которые работают на двигателях с топливным элементом. Это перспективный путь развития альтернативного топлива, потому что расход водорода меньше расхода бензина на единицу расстояния.

Еще одним направлением для разработки таких двигателей является авиация. В самолете ТУ-154 как раз таки и использовался такой топливный элемент, конечно же, после распада СССР все разработки в этом направлении были заморожены. Тем не менее над проектом пассажирского самолета, который будет работать на водороде, работают ученые Европейского Союза и Китая. Для того чтобы двигатель мог работать, такой самолет должен развить гиперскорость, что будет возможно сделать только при наличии дополнительного двигателя. Преимущества ДВС на водороде связаны с его воздействием на окружающую среду и высоким КПД.

Высокий уровень экологичности

Конечно, невысокая степень загрязнения присутствует, но из-за наличия в механизме автомобиля масла. Даже при добавлении водорода в обычное топливо производительность повышается на 20%. На 5 кг водородного топлива автомобиль проезжает до 500 км. Ученые считают водород единственным возобновляемым источником энергии.

При его неоспоримых преимуществах на сегодняшний день недостатков намного больше, которые в основном связаны с конструктивом двигателя:

  • Летучесть водорода. Заправить автомобиль с ДВС на водороде возможно только на заправке. Дозаправиться от другого автомобиля или из канистры по дороге не получится.
  • Взрывоопасность и пожароопасность. Всем известна катастрофа дирижабля «Гинденбург», который от одной искры загорелся в полете: из 97 человек, находящихся на борту, погибла треть.
  • Высокая стоимость топливных элементов и водородного двигателя, что, в свою очередь, увеличивает стоимость автомобиля. Аналог с водородным двигателем стоит в два раза дороже. Автомобиль на базе водородного двигателя обслуживать в 100 раз дороже, чем обычный двигатель.
  • Водородный двигатель занимает большой объем. В грузовиках и автобусах это не создает никаких неудобств, но в легковых автомобилях уменьшается объем багажного отделения.

Водородный двигатель – это не фантастика. Например, Honda, Toyota и Hyndai наладили линию по производству автомобилей с двигателями на базе водорода и плотно оккупировали рынок: Toyota Mirai (2015), Honda FCX Clarity (2008), Hyundai ix35 Fuel Cell. В середине декабря прошлого года Audi объявило о своем решении выпустить новый концепт на водороде – Q6 H-Tron.

Несмотря на все недостатки, водород – это единственный возобновляемый и неограниченный ресурс на планете. Для того чтобы автомобили с таким ДВС получили широкое распространение, ученым и разработчикам надо будет решить, как устранить негативные характеристики и уменьшить стоимость механизма, а государствам наладить инфраструктуру, чтобы машины на водороде перестали быть редкостью на дорогах.

Двигатель внутреннего сгорания уже давно является далеко не единственным силовым агрегатом, который устанавливается на автомобили: альтернативой ему в последнее время всё чаще становятся моторы, использующие в качестве движущей силы электричество, и водородные установки. Именно о последнем механизме и пойдет речь ниже.

Краткая история создания

Двигатель на водороде был создан в начале XIX века усилиями французского изобретателя. Спустя 35 лет в Англии был оформлен официальный патент на подобный агрегат, а в 1852 году немецкие инженеры доработали устройство, сделав возможной его работу на воздушно-водородной смеси.

Особое распространение моторы на водороде приобрели в годы ВОВ, когда бензин оказался в большом дефиците. Затем интерес к данному виду топлива поутих до топливного кризиса, случившегося в 70-е годы.

В последнее же время за развитие экологически безопасного топлива ратуют защитники природы и просто люди, неравнодушные к дальнейшей судьбе планеты и будущих поколений.

Функционирование двигателя на водородном топливе отличается от действия двигателя внутреннего сгорания, прежде всего, особенностями подачи и воспламенения смеси топлива, но принцип работы остаётся таким же.

Бензин горит медленно, а в случае с водородом время впрыска сдвигается к моменту возвращения поршня к крайнему положению, давление же может быть низким.

Водородный двигатель в идеальных условиях и вовсе способен работать без поступления воздуха: в камере сгорания останется после сжатия пар, который снова станет водой (это обеспечит радиатор). Однако на практике добиться этого сложно, т. к. на авто придётся устанавливать электролизер (специальное устройство, отделяющее водород от воды с целью осуществления реакции с кислородом).

Водородные топливные элементы

Эти устройства напоминают традиционные аккумуляторы с более высоким КПД, достигающим 45%.

В корпус помещается мембрана, проводящая исключительно протоны и разделяющая две камеры (анодную и катодную): в первую поступает водород, во вторую – кислород. Электроды покрываются катализатором (в его качестве часто применяют платину), при воздействии которого начинается процесс потери электронов водородом.

Протоны, проходящие в тот же период времени в катодную камеру, соединяются с приходящими извне электронами, что происходит опять же вследствие наличия катализатора.

Устройство водородного двигателя внутреннего сгорания

Такой движок практически ничем не отличается от пропанового агрегата, поэтому часто владельцы таких машин просто перенастраивают двигатели (но это и приводит к снижению КПД).

Как работает машина с водородным двигателем? В ней установлен генератор: внутри него протекает реакция окисления водорода, в конце которой получаются азот, пар и электрический ток (углекислый газ в продуктах распада отсутствует).

Автомобиль с таким силовым агрегатом можно сравнить с электрокаром, но с более компактным аккумулятором. На рабочий режим элемент выходит спустя пару минут после запуска, а вот на прогрев до рабочей температуры может уйти и час (на точное время влияет температура окружающей среды). Появляется вода, а электроны из анодной камеры попадают в электрическую цепь, подключенную к движку. Иными словами, получается ток, питающий автомобильный водородный двигатель.

Минусы водородного мотора

Водородные двигатели для автомобилей при всех плюсах не лишены недостатков:

  1. Высокая стоимость, на которую влияют, во-первых, электрический генератор, во-вторых, необходимые для эксплуатации авто баки из углепластика.
  2. Низкая энергетическая эффективность. У электромобиля КПД равняется 70%, у водородного топлива – 30%, если же водород получать из нефти, этот показатель увеличится примерно в 2 раза, но тогда появится углекислый газ.
  3. Малое количество заправок. Если в Европе они хотя бы есть, то в России такие заправочные станции в принципе отсутствуют.
  4. Необходимость периодической проверки баллонов, заправленных водородом, в целях безопасности.
  5. Увеличение веса машины и, как следствие, ухудшение маневренности.

Безусловно, защита окружающей среды имеет огромное значение, но пока что автолюбители не готовы жертвовать собственным комфортом и деньгами ради экологии.

Видео о том как работает водородный двигатель

Традиционный двигатель внутреннего сгорания (ДВС) имеет ряд существенных недостатков, что заставляет ученных искать ему достойную замену. Самым популярным вариантом подобной альтернативы является электродвигатель, однако он не единственный, кто может составить конкуренцию ДВС. В данной статье речь пойдет о водородном моторе, который по праву считается будущим автомобилестроения и может решить проблему с вредными выбросами и дороговизной топлива.

Краткая история

Несмотря на то, что сохранность окружающей среды только сейчас стала массовой проблемой, об изменении стандартного двигателя внутреннего сгорания ученые задумывались и раньше. Так, мотор, работающий на водороде, «увидел мир» еще в 1806 году, чему поспособствовал французский изобретатель Франсуа Исаак де Риваз (он производил водород при помощи электролиза воды).

Прошло несколько десятков лет, и в Англии выдали первый патент на водородный двигатель (1841 год), а в 1852 году немецкие ученые сконструировали ДВС, который мог работать на воздушно-водородной смеси.

Чуть позже, во времена блокады Ленинграда, когда бензин был дефицитным продуктом, а водород имелся в достаточно большом количестве, техник Борис Шелищ предложил использовать для работы заградительных аэростатов воздушно-водородную смесь. После этого на водородное питание перевели все ДВС лебедок аэростатов, а общее число работающих на водороде машин достигало 600 единиц.

В первой половине ХХ века интерес общественности к водородным двигателям был невелик, но с приходом топливно-энергетического кризиса 70-х годов ситуация резко изменилась. В частности, в 1879 году компания BMW выпустила первый автомобиль, который вполне успешно ездил на водороде (без взрывов и водяного пара, вырывающегося из выхлопной трубы).

Следом за BMW, в этом направлении начали работать другие крупные автопроизводители, и к концу прошлого столетия практически каждая уважающая себя автокомпания уже имела концепцию разработки машины на водородном топливе. Тем не менее, с окончанием нефтяного кризиса исчез и интерес общественности к альтернативным источникам топлива, хотя в наше время он снова начинает пробуждаться, подогреваемый защитниками экологии, борющимися за снижение токсичности выхлопных газов автомобилей.

Более того, цены на энергоносители и желание обрести топливную независимость только способствуют проведению теоретических и практических исследований ученными многих стран мира. Самыми активными являются компании BMW, General Motors, Honda Motor, Ford Motor.

Интересный факт! Водород – самый распространенный элемент во Вселенной, но найти его в чистом виде на нашей планете будет очень непросто.

Принцип работы и типы водородного двигателя

Основным отличием водородной установки от традиционных двигателей является способ подачи топливной жидкости и последующее воспламенением рабочей смеси. При этом принцип трансформации возвратно-поступательных движений кривошипно-шатунного механизма в полезную работу остается неизменным. Учитывая, что горение нефтяного топлива происходит достаточно медленно, топливно-воздушная смесь наполняет камеру сгорания раньше, чем поршень займет свое крайнее верхнее положение (так называемую верхнюю мертвую точку).

Стремительная реакция водорода дает возможность сдвинуть время впрыска ближе к тому моменту, когда поршень начинает возвращаться к нижней мертвой точке. Нужно отметить, что давление в топливной системе не обязательно будет высоким.

Если водородному двигателю создать идеальные рабочие условия, то он может иметь топливную систему питания закрытого типа, когда процесс смесеобразования будет проходить без участия атмосферных воздушных потоков. В таком случае после такта сжатия в камере сгорания остается водяной пар, который, проходя через радиатор, конденсируется и снова превращается в обычную воду.

Однако применение такого вида устройства возможно только тогда, когда на транспортном средстве имеется электролизер, отделяющий водород от воды для его повторной реакции с кислородом. На данный момент добиться таких результатов крайне сложно. Для стабильной работы двигателей применяется , а его испарения являются частью выхлопных газов.

Поэтому беспроблемный запуск силовой установки и ее устойчивая работа на гремучем газе без использования атмосферного воздуха – пока что неосуществимая задача. Различают два варианта автомобильных водородных установок: агрегаты, функционирующие на основе водородных топливных элементов, и водородные двигатели внутреннего сгорания.

Силовые установки на основе водородных топливных элементов

В основе принципа работы топливных элементов лежат физико-химические реакции. По сути, это те же свинцовые аккумуляторные батареи, вот только коэффициент полезного действия топливного элемента несколько выше, чем АКБ, и составляет около 45% (иногда больше).


В корпус водородно-кислородного топливного элемента помещена мембрана (проводит только протоны), разделяющая камеру с анодом и камеру с катодом. В камеру с анодом поступает водород, а в камеру катода – кислород. Каждый электрод заранее покрывают слоем катализатора, в роли которого нередко выступает платина. При его воздействии молекулярный водород начинает терять электроны.

В это же время протоны проходят через мембрану к катоду и под влиянием того же катализатора соединяются с электронами, поступающими снаружи. В результате реакции образуется вода, а электроны из камеры анода перемещаются в электроцепь, подсоединенную к мотору. Проще говоря, мы получаем электрический ток, который и питает двигатель.

Водородные двигатели на основе топливных элементов сегодня используются на автомобилях «Нива», оснащенных энергоустановкой «Антэл-1», и машинах «Лада 111» с агрегатом «Антел-2», которые были разработаны уральскими инженерами. В первом случае одного заряда хватает на 200 км, а во втором – на 350 км.

Следует отметить, что из-за дороговизны металлов (палладия и платины), входящих в конструкцию таких водородных двигателей, подобные установки имеют очень большую стоимость, что существенно увеличивает и цену транспортного средства, на котором они установлены.

А знаете ли вы? Специалисты компании Toyota начали работать с технологией топливных элементов еще 20 лет назад. Примерно тогда стартовал и проект гибридного автомобиля Prius.

Водородные двигатели внутреннего сгорания

Данный тип силовых установок очень похож на распространенные сегодня моторы на пропане, поэтому, чтобы перейти с пропана на водородное топливо, достаточно просто перенастроить двигатель. Уже существует немало примеров подобного перехода, но нужно сказать, что в этом случае КПД будет несколько ниже, чем при использовании топливных элементов. В то же время, для получения 1 кВт энергии водорода потребуется меньше, что вполне компенсирует данный недостаток.

Использование этого вещества в обычном моторе внутреннего сгорания вызовет целый ряд проблем. Во-первых , высокая температура сжатия «заставит» водород вступить в реакцию с металлическими элементами двигателя или даже моторным маслом. Во-вторых , даже небольшая утечка при контакте с раскаленным выпускным коллектором точно приведет к возгоранию.

По этой причине для создания водородных конструкций используются только силовые агрегаты роторного типа, так как их конструкция позволяет уменьшить риск возгорания за счет расстояния между впускным и выпускным коллектором. В любом случае, все проблемы пока удается обходить, что позволяет считать водород достаточно перспективным топливом.

Хорошим примером транспортного средства с водородной установкой может послужить экспериментальный седан BMW 750hL, концепт которого был представлен еще в начале 2000-х годов. Автомобиль оснащен двенадцатицилиндровым мотором, работающим на основе ракетного топлива и позволяющим разогнать машину до 140 км/час. Водород в жидкой форме хранится в специальном баке, и одного его запаса хватает на 300 километров пробега. Если же он полностью расходуется, система автоматически переключается на бензиновое питание.

Водородный двигатель на современном рынке

Последние исследования ученых в области эксплуатации водородных двигателей показали, что они не только очень экологичны (как электродвигатели), но могут быть очень эффективными в плане производительности. Более того, по техническим показателям водородные силовые установки обходят своих электрических собратьев, что уже было доказано (к примеру, Honda Clarity).

Также следует отметить, что, в отличие от систем Tesla Powerwall, водородные аналоги имеют один существенный недостаток: зарядить аккумулятор при помощи солнечной энергии уже не получится, а вместо этого придется искать специальную заправочную станцию, которых на сегодняшний день даже в мировом масштабе насчитывается не так уж и много.

Сейчас Honda Clarity выпущен достаточно ограниченной партией, и приобрести автомобиль можно только в Стране восходящего солнца, так как в Европе и Америке транспортное средство появится только в конце 2016 года.

Интересно знать! Генератор Power Exporter 9000 (может входить в комплектацию Honda Clarity) способен питать всю домашнюю технику почти целую неделю.

Также в наше время выпускаются и другие транспортные средства, использующие водородное топливо. К ним относятся Mazda RX-8 hydrogen и BMW Hydrogen 7 (гибриды, работающие на жидком водороде и бензине), а также автобусы Ford E-450 и MAN Lion City Bus.

Среди легковых автомобилей самыми заметными представителями водородных транспортных средств на сегодня являются автомобили Mercedes-Benz GLC F-Cell (есть возможность подзарядки от обычной бытовой сети, а суммарный запас хода составляет около 500 км), Toyota Mirai (работает только на водороде, и одной заправки должно хватать на 650 км пути) и Honda FCX Clarity (заявленный запас хода достигает 700 км). Но и это еще не все, ведь автотранспорт на водородном топливе выпускается и другими компаниями, например, Hyundai (Tucson FCEV).

Плюсы и основные недостатки водородных двигателей

При всех своих преимуществах, нельзя сказать, что водородный транспорт лишен определенных недостатков. В частности, необходимо понимать, что горючая форма водорода при комнатной температуре и нормальном давлении представлена в виде газа, что вызывает определенные трудности в хранении и транспортировке такого топлива. То есть существует серьезная проблема конструирования безопасных резервуаров для водорода, применяющегося в качестве топлива для автомобилей.

Кроме того, баллоны с этим веществом требуют периодической проверки и сертификации, которые могут выполняться только квалифицированными специалистами, имеющими соответствующую лицензию. Также к этим проблемам стоит добавить и дороговизну обслуживания водородного мотора, не говоря уже об очень ограниченном количестве заправочных станций (по крайней мере, в нашей стране).

Не стоит забывать и о том, что водородная установка увеличивает вес автомобиля, из-за чего он может оказаться не столь маневренным, как вам бы того хотелось. Поэтому, учитывая все вышесказанное, хорошенько подумайте: стоит ли приобретать водородное транспортное средство, или пока с этим лучше повременить.

Однако нужно сказать, что и преимуществ в подобном решении немало. Во-первых , ваш автомобиль не будет загрязнять окружающую среду токсичными выхлопными газами, во-вторых , массовое производство водорода может помочь решить проблему резко меняющихся цен на топливо и перебоев в поставках обычных видов топливных жидкостей.

К тому же, во многих странах уже построены сети трубопроводов для метана, и их несложно адаптировать для прокачки водорода с последующей доставкой к заправкам. Производить водород можно как в малых масштабах, то есть на местном уровне, так и массово – на крупных, централизованных предприятиях. Рост производства водорода послужит дополнительным стимулом для роста поставок этого вещества в бытовых целях (например, для отопления домов и офисов).

Подписывайтесь на наши ленты в



← Вернуться

×
Вступай в сообщество «auto-piter.ru»!
ВКонтакте:
Я уже подписан на сообщество «auto-piter.ru»