Водяной двигатель. Двигатель на воде - будущее автопроизводства

Подписаться
Вступай в сообщество «auto-piter.ru»!
ВКонтакте:

Многие владельцы машин ищут способы экономии топлива. Кардинально решить этот вопрос позволит водородный генератор для автомобиля. Отзывы тех, кто установил себе это устройство, позволяют говорить о существенном снижении затрат при эксплуатации транспорта. Так что тема достаточно интересная. Ниже пойдёт речь о том, как сделать водородный генератор собственными силами.

ДВС на водородном топливе

На протяжении нескольких десятилетий идут поиски возможности приспособить двигатели внутреннего сгорания для полной или гибридной работы на водородном топливе. В Великобритании ещё в 1841 году был запатентован двигатель, работающий на воздушно-водородной смеси. Концерн «Цеппелин» в начале ХХ века в качестве движущей установки своих знаменитых дирижаблей использовал двигатели внутреннего сгорания, работающие на водороде.

Развитию водородной энергетики способствовал и мировой энергетический кризис, разразившийся в 70 годах прошлого века. Однако с его окончанием водородные генераторы быстро были забыты. И это несмотря на массу преимуществ по сравнению с обычным топливом:

  • идеальная воспламеняемость топливной смеси на основе воздуха и водорода, что даёт возможность лёгкого пуска двигателя при любой температуре окружающей среды;
  • большое выделение тепла при сгорании газа;
  • абсолютная экологическая безопасность - отработавшие газы превращаются в воду;
  • выше в 4 раза скорость сгорания по сравнению с бензиновой смесью;
  • способность смеси работать без детонации при высокой степени сжатия.

Основной технической причиной, являющейся непреодолимой преградой в использовании водорода в качестве топлива автомобилей стала невозможность уместить достаточное количество газа на транспортном средстве. Размер топливного бака для водорода будет сравним с параметрами самого автомобиля. Большая взрывоопасность газа должна исключать возможность малейшей утечки. В жидком виде необходима криогенная установка. Этот способ также мало осуществим на автомобиле.

Газ Брауна

Сегодня водородные генераторы у автолюбителей приобретают популярность. Однако это не совсем то, о чем шла речь выше. Путём электролиза вода превращается в так называемый газ Брауна, который и добавляют к топливной смеси. Основная задача, которую решает этот газ, - полное сгорание топлива. Это и служит увеличением мощности и снижением расхода топлива на приличный процент. Некоторым механикам удалось добиться экономии на 40 %.

Решающее значение в количественном выходе газа имеет площадь поверхности электродов. Под действием электрического тока молекула воды начинает разлагаться на два атома водорода и один кислорода. Такая газовая смесь при сгорании выделяет почти в 4 раза больше энергии, чем при сгорании молекулярного водорода. Поэтому использование этого газа в двигателях внутреннего сгорания приводит к более эффективному сгоранию топливной смеси, уменьшает количество вредных выбросов в атмосферу, увеличивает мощность и уменьшает величину затраченного топлива.

Универсальная схема водородного генератора

Тем, у кого нет способностей к конструированию, водородный генератор для автомобиля можно купить у народных умельцев, поставивших на поток сборку и установку таких систем. Сегодня есть множество таких предложений. Стоимость агрегата и установки составляет порядка 40 тысяч рублей.

Но можно собрать такую систему и самостоятельно - сложного в ней нет ничего. Состоит она из нескольких простых элементов, соединённых в одно целое:

  1. Установки для электролиза воды.
  2. Накопительного резервуара.
  3. Улавливателя влаги из газа.
  4. Электронного блока управления (модулятора тока).

Ниже приведена схема, по которой можно легко собрать водородный генератор своими руками. Чертежи главной установки, производящей газ Брауна, достаточно просты и понятны.

Схема не представляет какой-либо инженерной сложности, повторить её может каждый, кто умеет работать с инструментом. Для автомобилей с инжекторной системой подачи топлива необходимо еще установить контроллер, регулирующий уровень подачи газа в топливную смесь и связанный с бортовым компьютером автомобиля.

Реактор

От площади электродов и их материала зависит количество получаемого объёма газа Брауна. Если в качестве электродов брать медные или железные пластины, то реактор не сможет работать продолжительное время по причине быстрого разрушения пластин.

Идеальным выглядит применение титановых листов. Однако их использование повышает затраты на сборку агрегата в несколько раз. Оптимальным считается применение пластин из высоколегированной нержавеющей стали. Металл этот доступен, его не составит труда приобрести. Также можно использовать отработавший своё бак от стиральной машины. Сложность составит только вырезание пластин нужного размера.

Типы установок

На сегодняшний день водородный генератор для автомобиля может быть укомплектован тремя различными по типу, характеру работы и производительности электролизёрами:


Первый тип конструкции вполне достаточен для множества карбюраторных двигателей. Отсутствует необходимость в установке сложной электронной схемы регулятора производительности газа, да и сама сборка такого электролизёра не представляет сложности.

Для более мощных автомобилей предпочтительна сборка второго типа реактора. А для двигателей, работающих на дизельном топливе, и большегрузных машин используют третий тип реактора.

Необходимая производительность

Для того чтобы можно было действительно экономить топливо, водородный генератор для автомобиля должен ежеминутно вырабатывать газ из расчёта 1 литр на 1000 рабочего объёма двигателя. Исходя из этих требований подбирается количество пластин для реактора.

Для увеличения поверхности электродов необходимо провести обработку поверхности наждачной бумагой в перпендикулярном направлении. Такая обработка крайне важна - она увеличит рабочую площадь и позволит избежать «прилипания» пузырьков газа к поверхности.

Последнее приводит к изоляции электрода от жидкости и препятствует нормальному электролизу. Не стоит также забывать, что для нормальной работы электролизёра вода должна быть щелочной. Катализатором может служить обычная сода.

Регулятор тока

Водородный генератор на авто в процессе работы увеличивает свою производительность. Это связано с выделением тепла при реакции электролиза. Рабочая жидкость реактора испытывает нагрев, и процесс протекает гораздо интенсивнее. Для контроля над течением реакции используют регулятор тока.

Если не понижать его, может произойти просто закипание воды, и реактор перестанет выдавать газ Брауна. Специальный контролер, регулирующий работу реактора, позволяет изменять производительность с увеличением оборотов.

Карбюраторные модели оборудуют контроллером с обычным переключателем двух режимов работы: "Трасса" и "Город".

Безопасность установки

Многие умельцы размещают пластины в пластиковых ёмкостях. Не стоит экономить на этом. Нужен бак из нержавеющего металла. Если его нет, можно использовать конструкцию с пластинами открытого типа. В последнем случае необходимо применять качественный изолятор тока и воды для надёжной работы реактора.

Известно, что температура горения водорода составляет 2800. Это самый взрывоопасный газ в природе. Газ Брауна - не что иное, как «гремучая» смесь водорода. Поэтому водородные генераторы на автомобильном транспорте требуют качественной сборки всех узлов системы и наличия датчиков для слежения за течением процесса.

Датчик температуры рабочей жидкости, давления и амперметр не будут лишними в конструкции установки. Особое внимание стоит уделить гидрозатвору на выходе из реактора. Он жизненно необходим. Если произойдёт воспламенение смеси, такой клапан предотвратит распространение пламени в реактор.

Водородный генератор для отопления жилых и производственных помещений, работающий на тех же принципах, отличается в несколько раз большей производительностью реактора. В таких установках отсутствие гидрозатвора представляет смертельную опасность. Водородные генераторы на автомобилях в целях обеспечения безопасной и надёжной работы системы также рекомендуется оборудовать таким обратным клапаном.

Пока без обычного топлива не обойтись

В мире есть несколько экспериментальных моделей, которые полностью работают на газе Брауна. Однако технические решения пока ещё не достигли своего совершенства. Простым жителям планеты такие системы недоступны. Поэтому пока автолюбителям остаётся довольствоваться «кустарными» разработками, которые дают возможность сократить затраты на топливо.

Немного о доверчивости и наивности

Некоторые предприимчивые дельцы предлагают на продажу водородный генератор на авто. Рассказывают про обработку лазером поверхности электродов или про уникальные секретные сплавы, из которых они сделаны, специальные катализаторы воды, разработанные в научных лабораториях мира.

Всё зависит от способности мысли таких предпринимателей к полёту научной фантазии. Доверчивость может сделать вас за ваши же средства (иногда даже не малые) владельцем установки, у которой через два месяца эксплуатации разрушатся контактные пластины.

Если уж вы решили таким способом экономить, то лучше собирать установку самостоятельно. По крайней мере, не на кого потом будет пенять.

Казалось бы, топливо из воды и больше ничего - что может быть проще и в то же время гениальнее? Внешняя энергия нужна только для начала рабочего цикла двигателя: некая сила воздействует на молекулы воды так, что они распадаются на два атома водорода и один атом кислорода каждая. Потом водород, как нас учили, с лающим звуком сгорает в кислороде. Как итог - образуется вода. Часть энергии идет на то, чтобы толкать поршни двигателя, а часть - на новую реакцию. Получилась бы идеальная машина: окружающую среду не загрязняет, да и воды ей требуется не так и много.

Однако физики по отношению к таким изобретениям настроены весьма скептически: сама идея вечного двигателя противоречит второму началу термодинамики. Напомним: «Невозможен самопроизвольный переход тепла от тела менее нагретого к телу более нагретому». В применении к нашему гипотетическому топливу из H 2 O можно его переформулировать так: на расщепление воды уйдет больше энергии, чем получится в результате сгорания водорода.

Тем не менее, изобретатели уверены, что где-то здесь закралась ошибка. И есть способ расщепить воду с наименьшими затратами энергии.

1. Самая конспирологическая модель

Некоторые утверждают, что американский изобретатель Стэн Майер (на фото) изобрел свой водный двигатель еще в конце прошлого века. И даже успел получить на него патент. Но негодяи из топливных корпораций (или из Мирового правительства - кому как больше нравится) погубили механика-самоучку, чтобы его изобретение никогда не вышло в массы. В марте 1998 года изобретатель поужинал в ресторане, дошел до парковки и умер в своей машине. Ему было всего 48 лет. Предположительная причина смерти - отравление, а по официальной версии - аневризма сосудов головного мозга.

Итак, двигатель мистера Майера был устроен следующим образом. Главное в устройстве - некий «водный топливный элемент». Именно в нем вода с помощью электролиза распадается на водород и кислород, образуя так называемый гремучий газ, HOH (гидроксид водорода).

Именно эту штуку Майер установил в двигатель багги, заменив также свечи зажигания на специальные инжекторы, впрыскивающие гремучий газ в цилиндры двигателя внутреннего сгорания. Машинку изобретатель собрал еще в 1990 году и продемонстрировал ее корреспонденту телеканала штата Огайо. По его словам, всего 83 литров воды было бы достаточно для того, чтобы совершить путешествие из Нью-Йорка в Лос-Анджелес. А это, ни много, ни мало, почти пять тысяч километров.

История изобретения довольно печальна. Стэн продал патент на багги двум инвесторам за 25 тысяч долларов. А в 1996 году, после того, как багги исследовали именитые эксперты из Лондонского университета Куин Мэри и Королевской инженерной академии наук Великобритании, суд признал его виновным в подлоге и обязал его вернуть деньги инвесторам.

2. Воздух и вода

В 2008 году мир потрясла очередная новость о двигателе, работающем лишь на воздухе и воде. На этот раз добрая весть прилетела из Японии: корпорация Genepax заявила, что для работы их двигателя требуется только вода и воздух. Как и в версии Стэна Майера, двигатель внутреннего сгорания от Genepax работает на водороде, который выделяется из воды. А вся соль устройства - в особой конструкции электродов, которые, собственно, и расщепляют воду на водород и кислород. Это изобретение японцы назвали MEA - Membrane Electrode Assembly (мембранное электродное устройство).

Работает оно так: гидрид металла взаимодействует с водой, а в результате получается водород. Правда, с помощью нового устройства эта реакция длится дольше - пока работает двигатель. А значит, нет нужды в особом баке для перевозки крайне взрывоопасного водорода. Как утверждают представители компании Genepax, для реакции нужны катализаторы - например, платина.

В последнее время о водном двигателе ничего не слышно - то ли революционности в открытии никакого нет, то ли ресурсодобывающие компании не дают уникальному автомобилю стать массовым.

3. Пакистан избавляет себя - и весь мир заодно - от топливного кризиса

Именно с таким посылом правительство мусульманского государства, обделенного ресурсами, решило вложиться в работу одного инженера, который заявил о создании уникального водного двигателя. Агха Вакар Ахмад создал специальное устройство, которое методом электролиза расщепляет воду на водород и кислород и может быть установлено на любой двигатель внутреннего сгорания. Что, кстати, и было продемонстрировано пакистанским ученым и экспертам из министерства энергетики.

Изобретение пакистанского механика не снимет ваш автомобиль с углеводородной иглы полностью. Тем не менее, после подключения его к стандартным цилиндрам бензинового или дизельного двигателя у автомобиля резко снижается расход топлива. И само топливо сгорает практически полностью - а значит, уменьшается выброс вредных веществ в атмосферу.

Разработки водно-бензинового двигателя сейчас пока продолжаются. В обстановке полной секретности, разумеется.

Умельцев собирать всевозможные механизмы из подручных средств в нашей стране всегда хватало. Подтверждением этих слов выступают советские журналы большим тиражом (не будем вспоминать названия), передачи наподобие «Очумелые ручки», книги «Сделай сам», и многочисленные видео в интернете. В этой статье разберем двигатель на воде.

Определения

Все устройства, которые созданы для превращения энергии в механическую работу, называются двигателями.

Двигатель на воде - определение размытое. Под ним можно подразумевать:

  • винтовые двигатели лодочных типов (может использовать двигатель внутреннего сгорания на воде, паровой и другие);
  • двигатели на реактивной тяге (гидроциклы, БТР и опять-таки подлодки);
  • генератор, превращающий энергию воды в механическую работу (двигатель, который работает на воде);
  • паровой двигатель (двигатель, работающий на воде, из-за простоты строения рассмотрен в деталях не будет).

Паровой двигатель устроен подобным образом: в котел заправляется горючее, в цилиндре закипает вода, увесистый поршень сверху под давлением поднимается до тех пор, пока не откроется клапан цилиндра. За счет поршня приходит в движение механизм.

О винтовых двигателях

В водном транспорте преимущественно используется следующий принцип: к двигателю (паровому, электрическому, дизельному, бензиновому и, с меньшей вероятностью, газовому) присоединяют винт определенных параметров.

О двигателях на реактивной тяге

По устройству - воду пропускают через себя за счет винтов (у ракет немного другой принцип). Особенность заключается в направленной струе, за счет которой объект приходит в движение. Для наглядного представления стоит вспомнить принцип работы водяного насоса. Преимуществами подобной системы является эффективность работы при высоких оборотах и относительная бесшумность.

О водных генераторах

Если встанет вопрос «как сделать двигатель на воде?», то за счет вращения винта можно привести в движение ротор. Он, в свою очередь, вызывает в катушках проводника магнитную индукцию. Она вызывает переменный ток. Ток или напрямую приводит в движение объект, или накапливает заряд в батарее. С батареи уже идет распределение на нужды.

Принцип сборки

Разберем примерную структуру цепи, использующей электрогенератор, и прицепим к нему двигатель на реактивной тяге. Это наглядно покажет, как работает определенный элемент. Цепь будет состоять из следующих компонентов: вращающиеся лопасти для генератора переменного тока, преобразователя переменного тока в постоянный, аккумулятора, совместимого электродвигателя, системы реактивной тяги.

Для обеспечения работоспособности генератора необходимо хотя бы примерно представлять скорость вращения ротора. Отталкиваясь от скорости вращения, получаем представление о мощности, которую должен вырабатывать генератор.

Электрический асинхронный генератор переменного тока состоит из статора (неподвижной части) и ротора (вращающейся). Статор состоит из блока наложенных друг на друга листов металла диэлектрика (не проводящих ток) с вырезанными сквозными пазами, и магнитных катушек, вставляющихся в них. Катушки не должны соприкасаться с блоком. Для этого используются специальные прокладки внутри, и стрелки снаружи из изолирующего материала. За пределы пазов они выступать не должны. Также изолируются катушки друг от друга. Форма и элементы ротора могут отличаться друг от друга.

Возьмем за основу двигатели на воде своими руками с расчетом на три фазы, так как данный вид наиболее распространен. Это значит, что будет использовано три катушки одинаковых размеров. В домашних условиях при напряжении в 220 вольт постоянного тока в 19 ампер, потребуется провод с сечением 1,5 миллиметра. Работать будет при условии потребления не выше 4,1 киловатта. Стоит также учесть частоту вращения. Количество вращений в секунду измеряется в герцах. В России принята чистота 50 Герц в секунду для электроники. Провода на выходе соединяются «треугольником» или «звездой».

О физике

Ватт представляет произведение ампер на вольт. Киловатт - это 1000 ватт. Вольт равен произведению Ампер (сила тока) на Ом (сопротивление). Добавляя витки, вы увеличите мощность генератора, но и необходимую требуемую работу при вращении ротора. В данном случае рекомендуется отталкиваться от требований аккумулятора на потребление, а не на отдачу.

Разумеется, возможно сделать расчеты будущего изделия, но в целях безопасности рекомендуется поэкспериментировать с малой мощностью ручного генератора, так как без опыта с первого раза собрать полностью рабочую модель не получится. Причиной этого могут служить мелкие недочеты, неподходящие материалы и прочее, а следствием нарушения техники безопасности - чья-то жизнь. Используйте для начала аккумулятор на 12 вольт и проволоку меньшего диаметра. В качестве ротора - простой ферромагнитный сердечник (железный цилиндр подойдет). Для начала можно сделать авто двигатель на воде для какой-нибудь машинки.

С генератора переменного тока потребуется сделать цепь из трансформатора (высокого напряжения в низкое), 4 диода прямоугольником (одностороннее движение), конденсатор (для бесперебойности), резистор и стабилитрон (ограничение по верхней и нижней планке) и последним регулятор. Вся цепь подключается к накопительной батарее. От батареи непосредственно двигатель под винт. Двигатель можно аналогичный изготовить.

С двигателя для реактивного движения делается вытяжка из проводов (с гидроизоляцией) или бобина. Удлинение размещается у нижнего основания лодки. Винт прикрепляется к нему. Форма винта, углы и количество лепестков по усмотрению.

В маленьком размере получится лодка с ручной подзарядкой и соплом, что обеспечит высокую скорость. Если масштаб увеличить, то при правильном подходе получится мощный двигатель на воде, а главное, появятся навыки.

На заметку

  • В обязательном порядке используйте амперметр.
  • Сила тока зависит от потребления и варьируется в зависимости от него.
  • Проводники должны быть покрыты изоляцией и не повреждены.
  • Для вставки проводников в пазы может использоваться специальный инструмент или резиновый молоток.
  • К открытым элементам нельзя прикасаться до тех пор, пока они работают.
  • После выключения двигателя в нем остается остаточный заряд, стоит дождаться пока излишек выйдет или снять его с помощью дополнительного прибора.
  • Для удобства следует подключить разрыватели цепи, чтобы легко можно было отключать двигатель на воде.
  • Возможно, стоит подумать о системе охлаждения ;
  • Важным элементом может стать реле для контроля напряжения и устройство защитного отключения.

Образовавшийся газ называют гидроген, газ Брауна или водяной газ. Двигатель на воде создали с целью оберечь экологию, ведь современные машины выкидывают в атмосферу кучу вредных выхлопных газов. Двигатель внутреннего сгорания превращает 15 процентов энергии бензина в механическую энергию, в то время как двигатель на воде эти проценты увеличит в разы. Законы термодинамики не будут нарушены, если в автомобиле будет работать система Брауна. Она заключается в следующем – газ начинает сгорать и образуется сухой водяной пар, который в свою очередь улучшает теплообмен между клапанами и седлом. Пар очищает клапанно-поршневую систему от нагара. Двигатель на воде имеет больший запас механической энергии, чем двигатель на бензине. Он экономичнее, потому что увеличивается пробег форсунок и межсервисный пробег. На литре воды можно ездить до 40 часов.

Создать двигатель на воде в домашних условиях не просто, но возможно, ведь воду нужно разложить на газ, а для этого потребуются катализаторы и электроды. Еще нужно запастись дистиллированной водой. Самая простая конструкция генератора Брауна будет состоять из оргстекла 5 мм, проволоки из нержавеющей стали марки 316, трубки из винила (диаметр 4 мм) и 6 банок по 700 мл объемом. Проволоки понадобится 20 метров. При работе используют резиновые перчатки. Нужно чтоб получилось определенное количество газа. Если двигатель объемом 1,5 литра, тогда газ должен образовываться от 0,7 до 1,5 литра в минуту. Этот процесс будет зависеть от напряжения, созданного на электродах. Электролит нагреется до 60 градусов за два часа, если подавать питание в 12 В. Это многовато, поэтому лучше использовать подачу в 6 В. К сожалению, двигатель чисто на воде еще не создали, поэтому понадобиться бензин, чтоб запустить мотор.

Далее из проволоки и пластин из нержавеющей стали создаются 2 электрода и крепятся на крышках банок. На крышках делаются штуцеры, в которые будет выходить газ, и болты, которые будут держать электроды. Крышки должны прилегать герметично, а электроды не замыкаются между собой. Теперь в 6 банок заливают по пол литра дистиллированной воды с добавлением пол чайной ложки КаОН. После того, как провернуть ключ зажигания, начнет вырабатываться газ. Трубку монтируют в воздуховод возле фильтра. При выработке водорода и кислорода, смесь проходит по коллектору автомобиля и смешивается с бензином из бака с топливом и сгорает в двигателе, как и полагается. При этом очень экономично сгорает сам бензин и двигатель не так быстро изнашивается. Такая система двигателя на воде должна работать на любом авто, если все соединить правильно и подать нужное напряжение.

Интерес у автомобильных экспериментаторов вызывает и GEET-реактор Пантоне. (GEET - это Глобальная Экологическая Энергетическая Технология.) Он в создании проще и не требует подачи определенного напряжения. Суть его в том, что выхлопные газы проходят через заостренный стержень. Он становится статически заряженным, поэтому молекулы воды, находящиеся в газе, расщепляет на водород и кислород. Выхлопные газы имеют высокую температуру, которая тоже участвует в процессе расщепления. Далее в реакторе молекулы углеводорода разделяются на углерод и водород. Получаются образования из кислорода, углерода и водорода. Кислород не производит окисления, потому что в газах содержится углекислота и азот. Проделывая опыты с таким двигателем на воде, нужна смесь из 20 процентов бензина и 80 процентов воды. Тогда он будет экономичным и способным выдержать далекие расстояния.

Кто проводил опыты, заметил, что часто соотношение получается 50 на 50, а не 20 на 80. Но те, кто водит авто и пытается экономить на дорогом в наше время топливе, будут радоваться и 10 процентам экономии, это очевидно. Недостатком реактора Пантоне является затруднительный выход выхлопных соединений, ведь там образуется большое сопротивление. Кроме того реактор однорежимный. GEET-реактор Пантоне стали устанавливать по всему миру на газонокосилки, бензогенераторы. Проводилась масса опытов и в реактор заливалась сырая нефть и даже пищевые отходы. На основе данного реактора попытались создать другое устройство GEET-муффлер. Оно работает при использовании водяного пара, сажи и углеводородов. Основной механизм – это циклон. В нем расщепление компонентов происходит при воздействии центробежной силы и дросселировании.

Муффлер состоит из каталитического реактора, в котором химический катализатор из выхлопных газов создает водород. Реакция может начаться при температуре в 400 градусов. В то время, как реактор Пантоне требовал температуры в 500-600 градусов. Можно работать и при температуре ниже 400 градусов, но тогда, чтоб появился водород, нужно установить реактор с электрическими нагревательными элементами. Для этого часто используют свечу накаливания от дизельных моторов. Двигатель на воде с использованием устройства GEET-муффлера тоже потребует бензин, но расход его будет от 20 до 30 процентов от всей жидкости. Максимум 50 в некоторых моделях автомобилей. Но это существенная экономия бюджета семьи. Устройство удобно тем, что оно компактное и вода, чтоб работал муффлер, берется не из отдельного бака, а из выхлопных газов. Значит, водителю не нужно контролировать процесс заправки автомобиля водой.

Двигатель на воде - это новые технологии, разрабатываемые учеными с целью очистить воздух от вредных выбросов в атмосферу. Ведь не только машины на бензине загрязняют его. Заводы и фабрики разрушают озоновый слой, что может привести к непоправимым последствиям и напрочь изменить климат всего земного шара. Природа уже давно посылает сигналы, чтоб человек задумался об использовании новых разработок.

Устройство предназначено для привода различных машин и механизмов. Двигатель содержит питательную емкость воды, гильзы, поршни-понтоны, перемещающиеся по направляющим стержням, впускные и выпускные клапаны, распределительный вал с кулачками, связанный с коленчатым валом. Поршни-понтоны выполнены полыми и снабжены клапанами перетока жидкости, обеспечивающими сообщение объема поршня с полостью цилиндра в нижнем и верхнем положениях поршня-понтона. Гильзы расположены ниже коленчатого вала, а между гильзой и поршнем-понтоном уплотнение отсутствует. Изобретение улучшает экономичность работы двигателя. 8 ил.

Изобретение относится к двигателестроению и может быть использовано в различных отраслях народного хозяйства, может быть использован в качестве источника энергоснабжения изолированных, удаленных от централизованного энергоснабжения объектов, в расположении которых имеются условия для работы двигателя. Известен гидростатический двигатель /1/, обеспечивающий получение энергии с использованием закона Архимеда за счет двигателя, образованного бесконечным рукавом, установленным на шкивы-барабаны, расположенные на параллельных осях. Известен гидравлический трансформатор /2/, содержащий две пары поршневых камер, имеющих соответственно верхнее и нижнее их попарное расположение с установленными в них, с возможностью возвратно-поступательного перемещения, поршневыми группами, связанными между собой механической связью и приводимыми в движение под действием давления рабочего тела, причем все поршневые камеры в устройстве снабжены входными и выходными каналами, верхние поршневые камеры имеют дополнительный входной канал для равномерного ввода рабочего тела (гидравлического потока) с относительно большим входом (и, соответственно, с большой мощностью), которые установлены вместе с емкостями выше самих камер, а нижние поршневые камеры снабжены упорами в верхней своей части для образования зазора между поршнем и упорной штангой, входящими в состав поршневой группы, необходимого для избежания потерь в развиваемой мощности при работе самого устройства. Наиболее близким аналогом является водяной двигатель /1/, содержащий питательную емкость, коленчатый вал с маховиком и опорами коренных подшипников, поршни-понтоны, гильзы цилиндров, расположенные ниже коленчатого вала, подводящие и отводящие трубы, направляющий стержень с направляющей втулкой и кронштейном, при этом между гильзой и поршнем-понтоном имеется зазор без уплотнения. Рабочий ход в двигателе совершается за счет подъемной силы Архимеда при движении поршня вверх. Недостатком известного водяного двигателя является неэкономичность его работы. Объясняется это тем, что при работе двигателя создается усилие на поршень-понтон только при его движении вверх за счет силы Архимеда. Вращающий момент на коленчатом валу действует при его повороте на 180 o и соответствует периоду действия усилия на поршень-понтон (только при его движении вверх). При движении поршня-понтона вниз совершается холостой ход двигателя. При этом при истечении жидкости из цилиндра уровень ее понижается, а "плавающий" поршень-понтон не подвержен усилию со стороны жидкости. Вращающий момент коленчатому валу за счет усилия поршня при движении его вниз не передается. Таким образом, при истечении жидкости из цилиндра она не совершает полезную работу. Другим недостатком двигателя, принятого за прототип, является низкая надежность энергоснабжения при его использовании в качестве источника энергии. Объясняется это тем, что для работы известного двигателя необходим источник воды, расположенный выше поверхности земли, как правило, заполняемый посредством дополнительного источника энергии. Такие источники воды не являются возобновляемыми и не могут работать бесконечно долго, а работают только в периоды, когда имеется запас воды. Это и снижает надежность энергоснабжения при использовании известного двигателя в качестве источника энергии (механической, а при подключении к коленчатому валу через трансмиссионную систему электрогенератора - электрической). Задачей предлагаемого изобретения является создание экономичного водяного двигателя, работающего за счет потока с циклическим применением подъемной силы Архимеда и гравитационной силы без использования минерального топлива, а также с повышенной надежностью энергоснабжения при использовании двигателя в качестве источника энергии. Поставленная задача достигается тем, что водяной двигатель содержит питательную емкость, коленчатый вал с маховиком и опорами коренных подшипников, шатуны, поршень-понтон, рабочие камеры, например гильзы цилиндров, расположенные ниже коленчатого вала, подводящие и отводящие трубы, впускной и выпускной клапаны, распределительное устройство, например распределительный вал с впускным и выпускным кулачками, взаимодействующими с электрическими контактами управления выпускным и впускными клапанами. Новым является то, что поршень-понтон выполнен полым и снабжен клапанами перетока, срабатывающими в его нижнем и верхнем положениях, а детали, расположенные ниже коленчатого вала, установлены в горной выработке, например буровой скважине, пересекающей проницаемый, поглощающий интервал, с установленными в ней двумя соосными колоннами обсадных труб большего и меньшего диаметра, при этом питательная емкость образована кольцевым объемом между обсадными колоннами и имеющим сообщение с возобновляемым источником воды, например с подземным водоносным горизонтом, а рабочая камера образована объемом обсадной колонны меньшего диаметра, в которой установлен впускной клапан, выпускной клапан установлен в скважине ниже рабочей камеры, при этом ниже обсадных колонн расположен пересекаемый скважиной проницаемый поглощающий интервал. На фиг.1, 2 и 3 в качестве примера схематично показано устройство и принцип действия предлагаемого одноцилиндрического водяного двигателя. На фиг. 4, 5, 6, 7, 8 приведены временные диаграммы перемещения поршня-понтона и работы клапанов. В том числе на фиг.1 дано положение коленчатого вала, поршня-понтона, воды впускного и выпускного клапанов двигателя, клапанов перетока поршня-понтона, кулачков распределительного вала при рабочем ходе поршня-понтона "вниз", на фиг.2 - положение тех же деталей в положении поршня-понтона в нижней мертвой точке (НМТ). На фиг.3 - положение тех же деталей при совершении рабочего хода поршня-понтона "вверх" в положении в верхней мертвой точке (ВМТ). На фиг.4 приведен график зависимости перемещения поршня Н от времени t H=f 1 (t) при работе двигателя. На фиг.5-8 приведены соответственно временные диаграммы работы клапанов при работе водяного двигателя: впускного клапана - Sвп.кл.дв.=f 2 (t), фиг.5; выпускного клапана двигателя S вып.кл.дв.=f 3 (t), фиг.6; впускного клапана перетока поршня S вп.кл.п.=f 4 (t), фиг.7; выпускного клапана перетока поршня-понтона S вып.кл.п.=f 5 (t), фиг.8. На диаграммах обозначениям S, равным 1 и 0, соответствуют открытое и закрытое положения клапанов - соответственно. Водяной двигатель содержит: 1 - питательную емкость для воды; 2 - впускные клапаны, например, электромагнитные с контактами К1, 3 - рабочую камеру; 4 - гильзу; 5 - поршень-понтон; 6 - направляющий стержень с направляющей втулкой 7; 8 - кронштейн; 9 - шатун; 10 - кривошип коленчатого вала; 11 - маховик; 12 - кулачок распределительного механизма; 13 - контакт впускного электромагнитного клапана; 14 - контакт выпускного электромагнитного клапана; 15 - выпускной клапан двигателя (в нормальном обесточенном состоянии клапан открыт); 16 - проницаемый поглощающий интервал; 17 - скважина; 18 - тумблер включения; 19 - канал сообщения с атмосферой; 20 - впускные клапаны перетока поршня-понтона с пружинами 21; 22 - обратные клапаны впуска в поршень-понтон; 23 - упоры впускных клапанов перетока поршня-понтона; 24 - выпускной клапан перетока поршня-понтона с пружиной 25; 26 -обратный клапан выпуска из поршня-понтона; 27 - упор выпускного клапана; 28 - обсадная колонна меньшего диаметра; 29 - обсадная колонна большего диаметра; 30 - водоносный интервал; 31 - отверстия в обсадной колонне большего диаметра; 32 - фильтр. Водяной двигатель работает следующим образом. В остановленном с использованием тумблера 18 двигателе состояние, предшествующее включению, характеризуется закрытым положением впускных клапанов 2, открытым положением выпускного клапана 15 и освобожденной от воды полости поршня-понтона 5. При этом, в общем случае, положение поршня-понтона 5 в гильзе 4 может быть различным. Для включения двигателя в работу "вручную" или с использованием пускового устройства (условно не показано) вращением маховика 11 устанавливается такое положение коленчатого вала 10 и кулачков 12, при котором замыкаются контакты 13 и 14 управления впускным 2 и выпускным 15 электромагнитными клапанами, включается тумблер 18. При этом через контакты 13 и 14 на впускные 2 и выпускной 15 клапаны подается напряжение, они срабатывают, при этом впускные клапаны 2 открываются, а выпускной клапан 15 закрывается. При этом питательная емкость 1 сообщается с рабочей камерой 3. Напор "Н" превышает положение поршня-понтона 5 в верхней мертвой точке на величину потерь напора при движении воды через впускные клапаны 2, в рабочей камере 3 в кольцевом канале между гильзой 4 и поршнем-понтоном 5. Вода из питательной емкости через впускные клапаны 2 перетекает в рабочую камеру 3. Поршень-понтон 5 размещен на направляющем стержне 6 и перемещается в направляющей втулке 7. Кронштейн 8 при помощи шарнирной пары соединен с шатуном 9, а последний с кривошипом коленчатого вала 10. При помощи привода приводится в работу вал распределительного устройства с установленным на нем кулачком 12. Рабочий ход поршня-понтона вверх осуществляется под действием силы Архимеда. При этом обладающий плавучестью поршень-понтон, погруженный в воду в цилиндре, перемещается вверх с перемещением вверх уровня воды в цилиндре. Рабочий ход поршня-понтона вниз осуществляется под действием гравитационной силы. При этом в верхнем положении поршня-понтона его полость наполняется перетекаемой из зазора между поршнем и гильзой цилиндра водой. Утяжеленный водой поршень-понтон движется в освобожденном от воды цилиндре (в воздухе) под действие силы тяжести. Таким образом, усилие на поршень-понтон воздействует как при его движении вверх (сила Архимеда), так и при его движении вниз (сила тяжести). Силы эти по абсолютной величине одного порядка и создают постоянный вращающий момент на коленчатом валу. В общем виде сила Архимеда Р A определяется исходя из следующего равенства: Р A =qw, (1) где - плотность жидкости, кг/м 3 ; q - ускорение силы тяжести, м/с 2 ; w - объем рассматриваемого тела, погруженного в жидкость, м 3 ; Различаются три случая: P A G - тело всплывает на поверхность жидкости; Р A =G - тело плавает в погруженном состоянии. Для предлагаемого водяного двигателя при движении поршня вверх применен случай, когда P A >G. При движении поршня вниз гравитационная сила определяется силой тяжести поршня, заполненного водой, в воздухе в соответствии с соотношением:
R G =mg,
где m - масса поршня заполненного водой, кг;
g - ускорение свободного падения, м/с 2 . При запуске водяного двигателя в работу рабочая камера 3 заполняется водой. Рабочий ход поршня-понтона вверх (фиг.3) обеспечивается быстрым заполнением полости цилиндра 4 рабочей камеры 3 водой до верхнего уровня поршня 5, в том числе кольцевого зазора между поршнем и гильзой цилиндра. При этом кулачком 12 распределительного вала замкнуты контакты 13, напряжение подается на впускные клапаны 2 двигателя, они открыты, а выпускной клапан 15 закрыт. В результате образования силы Архимеда под ее действием поршень-понтон 5 перемещается вверх, преобразуя за счет шатуна 9 его поступательное движение во вращательное движение коленчатого вала. Поршень-понтон приближается к верхней мертвой точке (ВМТ). Для обеспечения последующего рабочего хода поршня-понтона вниз в конце его рабочего хода вверх (в окрестности ВМТ) происходит заполнение полости поршня-понтона водой из зазора, образованного стенками поршня и гильзой цилиндра. Впускной клапан 2 двигателя находится в открытом состоянии в течение промежутка времени t 2 -t 1 (фиг.5). В момент времени t 2 поршень-понтон приближается к ВМТ (фиг.4), при этом подпружиненные 21 толкатели впускных клапанов перетока 20 поршня 5 прижимаются к упорам 23, и клапаны перетока 20 открываются (время t 2 , фиг.7). Из зазора между поршнем-понтоном и гильзой цилиндра вода через открытый клапан 20 перетекает в полость поршня-понтона за счет перепада уровней в сообщающихся сосудах. При этом обратные клапаны 22, изготовленные из материала с плотностью, несколько большей плотности воды, под действием потока воды через клапаны перемещаются по стержню толкателя. В последующем они предупреждают истечение воды из полости поршня-понтона при нештатных ситуациях, например когда поршень еще находится в ВМТ (клапан 20 открыт), а уровень воды в зазоре или цилиндре находится ниже уровня воды в поршне. В момент времени t 2 (фиг.5) кулачок 12 размыкает контактную группу 13, впускные электромагнитные клапаны 2 обесточиваются и закрываются. Спустя промежуток времени t 3 -t 2 (фиг.7), достаточный для полного перетока воды в полость поршня-понтона (коленчатый вал при этом проворачивается при положении поршня-понтона в окрестности ВМТ за счет момента инерции маховика), последний начинает движение вниз (фиг.4). В момент времени t 3 концы подпружиненных 21 толкателей впускных клапанов перетока 20 поршня 5 "отходят" от упоров 23 и клапаны 20 закрываются (фиг.7). Одновременно с этим (t 3 на фиг.6) кулачком 12 размыкается группа контактов 14, обесточивается и открывается выпускной клапан 15 двигателя (фиг.1). Начинает осуществляться рабочий ход поршня вниз. Вода из полости цилиндра 4 быстро сливается в скважину 17, а из нее - в проницаемый поглощающий интервал 16 с расходом, при котором уровень воды в полости цилиндра перемещается вниз с опережением положения дна поршня-понтона. При этом поршень-понтон 5 движется вниз под действием силы тяжести поршня, заполненного водой, находясь в воздухе. За счет шатуна 9 поступательное движение поршня-понтона преобразуется во вращательное движение коленчатого вала. Поршень приближается к нижней мертвой точке НМТ (фиг. 2), при этом в момент времени t 4 (фиг.4 и 6) кулачком 12 распредвала замыкается контактная группа 14 и закрывается выпускной клапан 15. Впускные клапаны 2 пока так же закрыты. При дальнейшем движении поршня-понтона вниз при его "подходе" к НМТ, для обеспечения последующего рабочего хода поршня-понтона вверх под действием силы Архимеда, происходит освобождение полости поршня-понтона от воды путем истечения ее в полость цилиндра (рабочей камеры). В момент времени t 5 (фиг.8) подпружиненный толкатель выпускного клапана перетока 24 поршня 5 прижимается к упору 27 и клапан перетока 24 открывается (фиг. 2). Из полости поршня-понтона 5 через канал клапана перетока 24 вода вытекает в полость цилиндра. При этом обратный клапан 26, изготовленный из материала с плотностью, несколько меньшей плотности воды, и установленный с возможностью свободного перемещения по стержню толкателя выпускного клапана перетока 24, предупреждает поступление воды в полость поршня в нештатной ситуации, например когда поршень-понтон находится в НМТ и клапан 24 открыт, а уровень жидкости в цилиндре при его повышении находится выше дна поршня. Спустя промежуток времени t 6 -t 5 (фиг.8), достаточный для истечения воды из полости поршня-понтона (при этом коленчатый вал проворачивается на некоторый угол за счет момента инерции маховика), последний начинает движение вверх. При t 6 стержень выпускного клапана перетока поршня "отходит" от упора 27 и клапан 24 закрывается (t 6 , (фиг.8). Одновременно открываются впускные клапаны 2 двигателя в момент t 6 (фиг.5), начинается рабочий ход поршня-понтона вверх, и цикл повторяется. Остановку двигателя производят выключением тумблера 18. При этом обесточиваются клапаны, как следствие впускные клапаны 2 закрываются, а выпускной клапан 15 открывается и двигатель останавливается. Пополнение питательной емкости 1 водой в процессе работы двигателя осуществляется из водоносного горизонта 30. Под действием постоянного гидростатического давления, действующего в этом водоносном горизонте, при понижения уровня в питательной емкости 1 в процессе работы двигателя вода из водоносного горизонта 30 поступает в нее через водяной фильтр 32. Фильтр представляет собой, как правило, сетку, устанавливаемую снаружи перфорированного отверстиями 31 обсадной колонны 29 большего диаметра. При соблюдении условия, когда расход воды при работе двигателя не превышает естественного восполнения, истощения запасов подземных вод в данном водоносном горизонте не происходит, его гидростатическое давление сохраняется, и двигатель может работать бесконечно долго. Возможны и другие варианты питания скважинного двигателя водой, например когда питательная емкость, образованная кольцевым объемом соосных обсадных колонн, имеет сообщение с другими вышерасположенными естественными водоемами - рекой, озером - или искусственными - отстойники, очистные сооружения и др. Возможна реализация многоцилиндрового водяного двигателя, при этом должны быть пробурены несколько буровых скважин. Преимуществом предлагаемого нами технического решения по сравнению с водяным двигателем, принятым в качестве прототипа является более высокая экономичность работы, характеризуемая меньшим удельным расходом воды (расход воды - на выполнение единицы работы). Удельный расход в предлагаемом двигателе меньше за счет того, что при одном расходе воды при совершении работы в одном цикле хода поршня выполняемая им работа увеличивается за счет совершения дополнительной полезной работы при движении поршня вниз. Применение предлагаемого водяного двигателя позволяет расширить номенклатуру средств "малой" энергетики, использующих нетрадиционные, в первую очередь возобновляемые ресурсы - подземные воды в естественных условиях их существования. При этом достигается эффект энергосбережения в сравнении с применением традиционных источников энергии и схем энергоснабжения. Также преимуществом двигателя при его использовании в качестве источника электроэнергии в сравнении с речными мини-ГЭС является возможность эксплуатировать круглогодично в районах с резкоконтинентальным климатом, в частности при низких температурах, при которых реки замерзают, так как используемое в нем рабочее тело - подземная вода - не замерзает. Источники информации
1. Заявка РФ 93018233, F 03 B 17/04, 1993 г. 2. Заявка РФ 98122451, F 03 B 17/02, 1998 г. 3. Патент РФ 2140562, F 03 1/02; F 01 B 29/08, 1997 - прототип.



← Вернуться

×
Вступай в сообщество «auto-piter.ru»!
ВКонтакте:
Я уже подписан на сообщество «auto-piter.ru»